Clark Lantz

Clark Lantz

Professor, Cellular and Molecular Medicine
Investigator, Center for Toxicology
Professor, Public Health
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6084

Work Summary

We are interested in the effects of early life exposures to environmental toxicants on lung growth and development. We determine if the early life exposures leads to adult disease.

Research Interest

R. Clark Lantz, PhD Exposure to environmental toxicants alters lung structure and function and leads to chronic lung disease, including cancer. Current investigations are examining the effects of exposure to environmentally relevant doses of arsenic and uranium. Arsenic is a naturally occurring metalloid found in water, soil and air. Exposure to inorganic arsenic occurs worldwide through environmental (contaminated drinking water, air, food and domestic fuel sources) and occupational exposures (smelting industries, pesticide production). In addition to its association with non-malignant diseases, arsenic is of major worldwide health concern because of its carcinogenic potential in humans. Epidemiologic studies have associated arsenic exposure with an increased risk of multiple human cancers including lung, skin, bladder, kidney, liver and stomach cancers. Our current research is focusing on two models to examine the effects of arsenic in the lung. One model relies on exposure to arsenic during lung development, both in utero and postnatally. We have shown that exposure of pregnant female mice and their offspring to 50 or 100 ppb as arsenic in drinking water resulted in altered pulmonary function in 28 day old animals. Airways were more responsive to bronchoconstriction. These changes were specific for exposure during development and were not reversible if arsenic was withdrawn. Associated with these functional changes, arsenic exposure resulted in a dose-dependent increase in airway smooth muscle and alterations in airway connective tissue expression. We are currently analyzing mediators that may be involved in this response to arsenic. In addition, we are beginning investigations into the effect of inhalation of arsenic on lung development. We are also currently using in vitro airway epithelial cell cultures to determine the effects of arsenic on wound repair and epithelial barrier function. In collaboration with Dr. Scott Boitano, we have been able to show that arsenic inhibits wound repair. This may be due in part to arsenic- induced alteration in calcium signaling. We have also been able to show that arsenic alters expression of epithelial junctional proteins and decreases epithelial barrier resistance. Research is also on going to identify protein alterations in lung lining fluid as biomarkers of exposure and effect. This study uses the technology of proteomics to evaluate and identify biomarkers of chronic environmental exposure to arsenic by evaluating large numbers of proteins simultaneously. We are comparing alterations in protein expression in exposed human populations in Arizona and Mexico, human cell lines, and in vivo rodent studies. Patterns of alterations in protein expression, both common and unique to these different test systems, will be identified. Finally, we are evaluating the chemical genotoxicity of uranium. In addition to its radioactive effects, uranium may also have adverse health effects because of its interactions with cellular macromolecules. We have found that uranium causes DNA damage through forming adducts which results in single strand breaks. In addition, uranium also inhibits double strand break DNA repair in airway epithelial cells. Keywords: pulmonary toxicology, arsenic, early life exposures

Publications

Wong, S. S., Hyde, J., Sun, N. N., Lantz, R. C., & Witten, M. L. (2004). Inflammatory responses in mice sequentially exposed to JP-8 jet fuel and influenza virus. Toxicology, 197(2), 139-47.

To examine the hypothesis that Jet Propulsion Fuel (JP-8) inhalation potentiates influenza virus-induced inflammatory responses, we randomly divided female C57BL/6 mice (4-weeks old, weighing approximately 24.6g) into the following groups: air control, JP-8 alone (1023 mg/m(3) of JP-8 for 1h/day for 7 days), A/Hong Kong/8/68 influenza virus (HKV) alone (a 10 microl aliquot of 2000 viral titer in the nasal passages), and a combination of JP-8 with HKV (JP-8 + HKV). The HKV alone group exhibited significantly increased total cell number/granulocyte differential in bronchoalveolar lavage fluid (BALF) compared to controls whereas the JP-8 alone group did not. The JP-8 + HKV group further exacerbated the HKV alone-induced response. However, increases in pulmonary microvascular permeability and pathological alterations in JP-8 + HKV just matched the sum of JP-8 alone- and HKV alone-induced response. Increases in BALF substance P in the JP-8 alone group and BALF leukotriene B4 or total lung compliance in the HKV alone group, respectively were similar to the changes in the JP-8 + HKV group. These findings suggest that changes in the JP-8 + HKV group may be attributed to either JP-8 inhalation or HKV treatment and indicate the different physiological responses to either JP-8 or HKV exposure. Taken together, most of the data did not provide supporting evidence that JP-8 inhalation synergizes influenza virus-induced inflammatory responses.

Wong, S. S., Sun, N. N., Lantz, R. C., & Witten, M. L. (2004). Substance P and neutral endopeptidase in development of acute respiratory distress syndrome following fire smoke inhalation. American journal of physiology. Lung cellular and molecular physiology, 287(4), L859-66.

To characterize the tachykininergic effects in fire smoke (FS)-induced acute respiratory distress syndrome (ARDS), we designed a series of studies in rats. Initially, 20 min of FS inhalation induced a significant increase of substance P (SP) in bronchoalveolar lavage fluid (BALF) at 1 h and persisted for 24 h after insult. Conversely, FS disrupted 51.4, 55.6, 46.3, and 43.0% enzymatic activity of neutral endopeptidase (NEP, a primary hydrolyzing enzyme for SP) 1, 6, 12, and 24 h after insult, respectively. Immunolabeling density of NEP in the airway epithelium largely disappeared 1 h after insult due to acute cell damage and shedding. These changes were also accompanied by extensive influx of albumin and granulocytes/lymphocytes in BALF. Furthermore, levels of BALF SP and tissue NEP activity dose dependently increased and decreased, respectively, following 0, low (10 min), and high (20 min) levels of FS inhalation. However, neither the time-course nor the dose-response study observed a significant change in the highest affinity neurokinin-1 receptor (NK-1R) for SP. Finally, treatment (10 mg/kg im) with SR-140333B, an NK-1R antagonist, significantly prevented 20-min FS-induced hypoxemia and pulmonary edema 24 h after insult. Further examination indicated that SR-140333B (1.0 or 10.0 mg/kg im) fully abolished early (1 h) plasma extravasation following FS. Collectively, these findings suggest that a combination of sustained SP and NEP inactivity induces an exaggerated neurogenic inflammation mediated by NK-1R, which may lead to an uncontrolled influx of protein-rich edema fluid and cells into the alveoli as a consequence of increased vascular permeability.