Craig A Aspinwall

Craig A Aspinwall

Department Head, Chemistry & Biochemistry - Sci
Professor, Chemistry and Biochemistry-Sci
Professor, Chemistry and Biochemistry - Med
Professor, Biomedical Engineering
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-6338

Research Interest

Craig A. Aspinwall, PhD, is an Associate Professor of Chemistry and Biochemistry at the University of Arizona. Dr. Aspinwall’s research is focused on the development of novel technology that facilitates the investigation of the molecular underpinnings of disease states. His work encompasses a broad range of scientific disciplines and allows complex biochemical problems to be studied with an increasing level of molecular detail. Dr. Aspinwall has published over 40 original research papers and maintains active collaborations with several international investigators. His research has been funded by the National Institutes of Health, the National Science Foundation, the Arizona Biomedical Research Corporation, and other organizations. He is actively involved in mentoring and education of students and young scientists.

Publications

Baker, C. A., & Aspinwall, C. A. (2015). Emerging trends in precision fabrication of microapertures to support suspended lipid membranes for sensors, sequencing, and beyond. Analytical and bioanalytical chemistry, 407(3), 647-52.

Suspended lipid membranes, also called black lipid membranes (BLMs), are an important model system that approximates the lipid bilayer environment of cell membranes. Increasingly, BLMs are utilized in sensing strategies that harness high sensitivity measurements of ion flux across the membrane, typically facilitated by ion channel proteins. BLMs are suspended across microapertures that connect two otherwise isolated fluidic compartments, and the precision fabrication of such microapertures can contribute to the stability and performance of the resulting BLM. Here, we highlight two emerging trends in the precision fabrication of microapertures for BLM formation: microfabrication in silicon-based thin film substrates, and microfabrication in the negative photoresist material SU-8. Four unique fabrication strategies are outlined, and we project the impact that these microfabrication strategies will have for BLM-integrated bioanalytical technologies.

Gallagher, E. S., Adem, S. M., Bright, L. K., Calderon, I. A., Mansfield, E., & Aspinwall, C. A. (2014). Hybrid phospholipid bilayer coatings for separations of cationic proteins in capillary zone electrophoresis. Electrophoresis, 35(8), 1099-105.

Protein separations in CZE suffer from nonspecific adsorption of analytes to the capillary surface. Semipermanent phospholipid bilayers have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m(-2) , respectively, compared to 17 ± 1 mJ m(-2) for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3-1.9 × 10(-4) cm(2) V(-1) s(-1) ) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , 4.8 ± 0.4 × 10(-4) cm(2) V(-1) s(-1) , and 6.0 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , respectively), with increased stability compared to phospholipid bilayer coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6%, n ≥ 6) with separation efficiencies as high as 200 000 plates/m.

Gallagher, E. S., Mansfield, E., & Aspinwall, C. A. (2014). Stabilized phospholipid membranes in chromatography: toward membrane protein-functionalized stationary phases. Analytical and bioanalytical chemistry, 406(9-10), 2223-9.

Transmembrane protein (TMP)-functionalized materials have resulted in powerful new methods in chemical analysis. Of particular interest is the development of high-throughput, TMP-functionalized stationary phases for affinity chromatography of complex mixtures of analytes. Several natural and synthetic phospholipids and lipid mimics have been used for TMP reconstitution, although the resulting membranes often lack the requisite chemical and temporal stability for long-term use, a problem that is exacerbated in flowing separation systems. Polymerizable lipids with markedly increased membrane stability and TMP functionality have been developed over the past two decades. More recently, these lipids have been incorporated into a range of analytical methods, including separation techniques, and are now poised to have a significant impact on TMP-based separations. Here, we describe current methods for preparing TMP-containing stationary phases and examine the potential utility of polymerizable lipids in TMP affinity chromatography.

Aspinwall, C., Cheng, Z., & Aspinwall, C. A. (2006). Nanometre-sized molecular oxygen sensors prepared from polymer stabilized phospholipid vesicles. The Analyst, 131(2).

Nanometre-sized, chemically-stabilized phospholipid vesicle sensors have been developed for detection of dissolved molecular oxygen. Sensors were prepared by forming 150 nm phospholipid vesicles from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or DOPC doped with small (1%) mole percentages of 1,2-dioleoyl-sn-glycero-3-phosphoethanol amine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE). Sensors were stabilized via cross-linking polymerization of hydrophobic methacrylate monomers partitioned into the hydrophobic interior of the DOPC bilayer. The resultant unilamellar, nanometre-sized, polymer-lipid vesicles are spherical, biocompatible and protect sensing components that are loaded into the aqueous interior of the vesicle from interfering species in the exterior environment. For O(2) detection, the oxygen-sensitive fluorescent dye, tris(1,10-phenanthroline)ruthenium(II) chloride (Ru(phen)(3)) was encapsulated into the aqueous interior of the polymerized phospholipid vesicle. NBD-PE was introduced into the phospholipid bilayer of the sensor as a reference dye, allowing ratiometric sensors to be constructed. The resultant sensors show high sensitivity, excellent reversibility and excellent linearity over a physiological range of dissolved oxygen concentrations. These results suggest that polymerized phospholipid vesicle sensors can be used for monitoring intracellular O(2) dynamics.

Carlin, R. T., Sullivan, T., Sherman, J. W., & Aspinwall, C. A. (1993). Asymmetric electrode kinetics induced by concurrent metal-ligand bond dissociation. Electrochimica Acta, 38(7), 927-934.

Abstract:

The electrochemistry of the Cu(II)/Cu(I) couple under nitrogen and carbon monoxide has been investigated in the ambient-temperature molten salt AlCl3:MEICl (MEICl = 1-methyl-3-ethyl-imidazolium chloride) at a 250 μm tungsten disk electrode. Under nitrogen, the couple exhibits reversible electrode kinetics; however, under carbon monoxide, a Cu(I)CO complex is formed and the Cu(II)/Cu(I) couple displays asymmetric, quasi-reversible electrode kinetics. Pulse voltammetric data were fit with a nonlinear least-squares fitting program to give an apparent standard rate constant (k0a) of 1.5 × 10-3 cm s-1 and an anodic transfer coefficient (β) of 0.12-0.17 for the oxidation of the Cu(I)CO complex. The change from reversible to quasi-reversible electrode kinetics is attributed to the concurrent dissociation of the Cu(I)CO bond during the electron transfer process. © 1993.