Cynthia Miranti
Chair, Cancer Biology - GIDP
Co-Program Leader, Cancer Biology Research Program
Member of the Graduate Faculty
Professor, BIO5 Institute
Professor, Cellular and Molecular Medicine
Primary Department
(520) 626-2269
Research Interest
Research Interests Our objective is to define how integrin interactions within the tumor microenvironment impact prostate cancer development, hormonal resistance, and metastasis. Our approach is to understand the normal biology of the prostate gland and its microenvironment, as well as the bone environment, to inform on the mechanisms by which tumor cells remodel and use that environment to develop, acquire hormonal resistance, and metastasize. Our research is focused in three primary areas: 1) developing in vitro and in vivo models that recapitulate human disease based on clinical pathology, 2) identifying signal transduction pathway components that could serve as both clinical markers and therapeutic targets, and 3) defining the genetic/epigenetic programming involved in prostate cancer development.

Publications

Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J. A., Ahn, H. J., Ait-Mohamed, O., Ait-Si-Ali, S., Akematsu, T., Akira, S., Al-Younes, H. M., Al-Zeer, M. A., Albert, M. L., Albin, R. L., , Alegre-Abarrategui, J., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445-544.
BIO5 Collaborators
Walter Klimecki, Cynthia Miranti

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

Tesfay, L., Schulz, V. V., Frank, S. B., Lamb, L. E., & Miranti, C. K. (2016). Receptor tyrosine kinase Met promotes cell survival via kinase-independent maintenance of integrin α3β1. Molecular biology of the cell, 27(15), 2493-504.

Matrix adhesion via integrins is required for cell survival. Adhesion of epithelial cells to laminin via integrin α3β1 was previously shown to activate at least two independent survival pathways. First, integrin α3β1 is required for autophagy-induced cell survival after growth factor deprivation. Second, integrin α3β1 independently activates two receptor tyrosine kinases, EGFR and Met, in the absence of ligands. EGFR signaling to Erk promotes survival independently of autophagy. To determine how Met promotes cell survival, we inhibited Met kinase activity or blocked its expression with RNA interference. Loss of Met expression, but not inhibition of Met kinase activity, induced apoptosis by reducing integrin α3β1 levels, activating anoikis, and blocking autophagy. Met was specifically required for the assembly of autophagosomes downstream of LC3II processing. Reexpression of wild-type Met, kinase-dead Met, or integrin α3 was sufficient to rescue death upon removal of endogenous Met. Integrin α3β1 coprecipitated and colocalized with Met in cells. The extracellular and transmembrane domain of Met was required to fully rescue cell death and restore integrin α3 expression. Thus Met promotes survival of laminin-adherent cells by maintaining integrin α3β1 via a kinase-independent mechanism.

Miranti, C. K., & Brugge, J. S. (2002). Sensing the environment: a historical perspective on integrin signal transduction. Nature cell biology, 4(4), E83-90.

Cell adhesion mediated by integrin receptors has a critical function in organizing cells in tissues and in guiding haematopoietic cells to their sites of action. However, integrin adhesion receptors have broader functions in regulating cell behaviour through their ability to transduce bi-directional signals into and out of the cell and to engage in reciprocal interactions with other cellular receptors. This historical perspective traces the key findings that have led to our current understanding of these important functions of integrins.

Tolbert, W. D., Daugherty, J., Gao, C., Xie, Q., Miranti, C., Gherardi, E., Vande Woude, G., & Xu, H. E. (2007). A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14592-7.

Hepatocyte growth factor (HGF) activates the Met receptor tyrosine kinase by binding and promoting receptor dimerization. Here we describe a mechanistic basis for designing Met antagonists based on NK1, a natural variant of HGF containing the N-terminal and the first kringle domain. Through detailed biochemical and structural analyses, we demonstrate that both mouse and human NK1 induce Met dimerization via a conserved NK1 dimer interface. Mutations designed to alter the NK1 dimer interface abolish its ability to promote Met dimerization but retain full Met-binding activity. Importantly, these NK1 mutants act as Met antagonists by inhibiting HGF-mediated cell scattering, proliferation, branching, and invasion. The ability to separate the Met-binding activity of NK1 from its Met dimerization activity thus provides a rational basis for designing Met antagonists. This strategy of antagonist design may be applicable for other growth factor receptors by selectively abolishing the receptor activation ability but not the receptor binding of the growth factors.

Bromberg-White, J. L., Webb, C. P., Patacsil, V. S., Miranti, C. K., Williams, B. O., & Holmen, S. L. (2004). Delivery of short hairpin RNA sequences by using a replication-competent avian retroviral vector. Journal of virology, 78(9), 4914-6.

While recent studies have demonstrated that retroviral vectors can be used to stably express short hairpin RNA (shRNA) to inhibit gene expression, these studies have utilized replication-defective retroviruses. We describe the creation of a replication-competent, Gateway-compatible retroviral vector capable of expressing shRNA that inhibits the expression of specific genes.