David W Galbraith

David W Galbraith

Professor, Plant Science
Professor, Biomedical Engineering
Professor, BIO5 Institute
Primary Department
(520) 621-9153

Work Summary

Work Summary

I examine the molecular functions of the different cells found in the tissues and organs of plants and animals and how they combine these functions to optimize the health and vigor of the organism.

Research Interest

Research Interest

David Galbraith obtained undergraduate and graduate degrees in Biochemistry from the University of Cambridge, and postdoctoral training as a NATO Fellow at Stanford University. His first academic appointment was at the University of Nebraska Lincoln, and he became Professor of Plant Sciences at the University of Arizona in 1989. His research has focused on the development of instrumentation and methods for the analysis of biological cells, organs, and systems. He is internationally recognized as a pioneer in the development and use of flow cytometry and sorting in plants, developing widely-used methods for the analysis of genome size and cell cycle status, and for the production of somatic hybrids. He also was among the first to develop methods for the analysis of gene expression within specific cell types, using markers based on Fluorescent Protein expression for flow sorting these cells, and microarray platforms for analysis of their transcriptional activities and protein complements. Current interests include applications of highly parallel platforms for transcript and protein profiling of minimal sample sizes, and for analysis of genetic and epigenetic mechanisms that regulate gene expression during normal development and in diseased states, specifically pancreatic cancer. He is also funded to study factors involved in the regulation of bud dormancy in Vitis vinifera, and has interests in biodiversity and improvement of third-world agriculture. He has published more than 180 scholarly research articles, holds several patents, was elected a Fellow of the American Association for Advancement of Science in 2002, and serves on the editorial board of Cytometry Part A. He is widely sought as a speaker, having presented over 360 seminars in academic, industrial and conference settings. He was elected Secretary of the International Society for Advancement of Cytometry in 2016. Keywords: Plant and Animal Cellular Engineering; Biological Instrumentation; Flow Cytometry and Sorting


Brown, J. K., Lambert, G. M., Ghanim, M., Czosnek, H., & Galbraith, D. W. (2005). Nuclear DNA content of the whitefly Bemisia tabaci (Aleyrodidae: Hemiptera) estimated by flow cytometry. Bulletin of Entomological Research, 95(4), 309-312.
BIO5 Collaborators
Judith K Brown, David W Galbraith

PMID: 16048678;Abstract:

The nuclear DNA content of the whitefly Bemisia tabaci (Gennnadius) was estimated using flow cytometry. Male and female nuclei were stained with propidium iodide and their DNA content was estimated using chicken red blood cells and Arabidopsis thaliana L. (Brassicaceae) as external standards. The estimated nuclear DNA content of male and female B. tabaci was 1.04 and 2.06 pg, respectively. These results corroborated previous reports based on chromosome counting, which showed that B. tabaci males are haploid and females are diploid. Conversion between DNA content and genome size (1 pg DNA = 980 Mbp) indicate that the haploid genome size of B. tabaci is 1020 Mbp, which is approximately five times the size of the genome of the fruitfly Drosophila melanogaster Meigen. These results provide an important baseline that will facilitate genomics-based research for the B. tabaci complex. © CAB International, 2005.

Jiexun, L. i., Xin, L. i., Hua, S. u., Chen, H., & Galbraith, D. W. (2006). A framework of integrating gene relations from heterogeneous data sources: An experiment on Arabidopsis thaliana. Bioinformatics, 22(16), 2037-2043.
BIO5 Collaborators
Hsinchun Chen, David W Galbraith

PMID: 16820427;Abstract:

One of the most important goals of biological investigation is to uncover gene functional relations. In this study we propose a framework for extraction and integration of gene functional relations from diverse biological data sources, including gene expression data, biological literature and genomic sequence information. We introduce a two-layered Bayesian network approach to integrate relations from multiple sources into a genome-wide functional network. An experimental study was conducted on a test-bed of Arabidopsis thaliana. Evaluation of the integrated network demonstrated that relation integration could improve the reliability of relations by combining evidence from different data sources. Domain expert judgments on the gene functional clusters in the network confirmed the validity of our approach for relation integration and network inference. © 2006 Oxford University Press.

Sheen, J., Hwang, S., Niwa, Y., Kobayashi, H., & Galbraith, D. W. (1995). Green-fluorescent protein as a new vital marker in plant cells. Plant Journal, 8(5), 777-784.

PMID: 8528289;Abstract:

The green-fluorescent protein (GFP) from jellyfish Aequorea victoria has been used as a convenient new vital marker in various heterologous systems. However, it has been problematic to express GFP in higher eukaryotes, especially in higher plants. This paper reports that either a strong constitutive or a heat-shock promoter can direct the expression of GFP which is easily detectable in maize mesophyll protoplasts. In this single-cell system, bright green fluorescence emitted from GFP is visible when excited with UV or blue light even in the presence of blue fluorescence from the vacuole or the red chlorophyll autofluorescence from chloroplasts using a fluorescence microscope. No exogenous substrate, co-factor, or other gene product is required. GFP is very stable in plant cells and shows little photobleaching. Viable cells can be obtained after fluorescence-activated cell sorting based on GFP. The paper further reports that GFP can be detected in intact tissues after delivering the constructs into Arabidopsis leaf and root by microprojectile bombardment. The successful detection of GFP in plant cells relies on the use of a universal transcription enhancer from maize or the translation enhancer from tobacco mosaic virus (TMV) to boost the expression. This new reporter could be used to monitor gene expression, signal transduction, co-transfection, transformation, protein trafficking and localization, protein-protein interaction, cell separation and purification, and cell lineage in higher plants.

Lee, T., Kim, Y., Thi, T., Song, S. I., Kim, J., Kang, K. Y., Gynheung, A. n., Jung, K., Galbraith, D. W., Kim, M., Yoon, U., & Nahm, B. H. (2009). RiceArrayNet: A database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiology, 151(1), 16-33.

PMID: 19605550;PMCID: PMC2735985;Abstract:

Microarray data can be used to derive understanding of the relationships between the genes involved in various biological systems of an organism, given the availability of databases of gene expression measurements from the complete spectrum of experimental conditions and materials. However, there have been no reports, to date, of such a database being constructed for rice (Oryza sativa). Here, we describe the construction of such a database, called RiceArrayNet (RAN; http://www.ggbio.com/arraynet/), which provides information on coexpression between genes in terms of correlation coefficients (γ values). The average number of coexpressed genes is 214, with SD of 440 at γ ≥ 0.5. Given the correlation between genes in a gene pair, the degrees of closeness between genes can be visualized in a relational tree and a relational network. The distribution of correlated genes according to degree of stringency shows how each gene is related to other genes. As an application of RAN, the 16-member L7Ae ribosomal protein family was explored for coexpressed genes and gene expression values within and between rice and Arabidopsis (Arabidopsis thaliana), and common and unique features in coexpression partners and expression patterns were observed for these family members. We observed a correlation pattern between Os01g0968800, a drought-responsive element-binding transcription factor, Os02g0790500, a trehalose-6-phosphate synthase, and Os06g0219500, a small heat shock factor, reflecting the fact that genes responding to the same biological stresses are regulated together. The RAN database can be used as a tool to gain insight into a particular gene by examining its coexpression partners. © 2009 American Society of Plant Biologists.

Baisakh, N., Ramana, R. M., Rajasekaran, K., Subudhi, P., Janda, J., Galbraith, D., Vanier, C., & Pereira, A. (2012). Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora. Plant Biotechnology Journal, 10, 453-464.