David W Galbraith
Professor, BIO5 Institute
Professor, Biomedical Engineering
Professor, Plant Science
Primary Department
(520) 621-9153
Work Summary
I examine the molecular functions of the different cells found in the tissues and organs of plants and animals and how they combine these functions to optimize the health and vigor of the organism.
Research Interest
David Galbraith obtained undergraduate and graduate degrees in Biochemistry from the University of Cambridge, and postdoctoral training as a NATO Fellow at Stanford University. His first academic appointment was at the University of Nebraska Lincoln, and he became Professor of Plant Sciences at the University of Arizona in 1989. His research has focused on the development of instrumentation and methods for the analysis of biological cells, organs, and systems. He pioneered the use of flow cytometry and sorting in plants, developing widely-used methods for the analysis of genome size and cell cycle status, and for the production of somatic hybrids. He also was among the first to develop methods for the analysis of gene expression within specific cell types, using markers based on Fluorescent Protein expression for flow sorting these cells, and microarray platforms for analysis of their transcriptional activities and protein complements. Current interests include applications of highly parallel platforms for transcript and protein profiling of minimal sample sizes, and for analysis of genetic and epigenetic mechanisms that regulate gene expression during normal development and in diseased states, specifically pancreatic cancer. He is also funded to study factors involved in the regulation of bud dormancy in Vitis vinifera, and has interests in biodiversity and improvement of third-world agriculture. He has published more than 160 scholarly research articles, holds several patents, was elected a Fellow of the American Association for Advancement of Science in 2002, and serves on the editorial boards of Cytometry, Plant Methods, and Frontiers in Genetics, the latter as editor-in-chief of Frontiers in Genome Assay Technology. He is widely sought as a speaker, having presented over 290 seminars in academic, industrial and conference settings. Keywords: Plant and Animal Cellular Engineering; Biological Instrumentation; Flow Cytometry and Sorting

Publications

Brown, J. K., Lambert, G. M., Ghanim, M., Czosnek, H., & Galbraith, D. W. (2005). Nuclear DNA content of the whitefly Bemisia tabaci (Aleyrodidae: Hemiptera) estimated by flow cytometry. Bulletin of Entomological Research, 95(4), 309-312.
BIO5 Collaborators
Judith K Brown, David W Galbraith

PMID: 16048678;Abstract:

The nuclear DNA content of the whitefly Bemisia tabaci (Gennnadius) was estimated using flow cytometry. Male and female nuclei were stained with propidium iodide and their DNA content was estimated using chicken red blood cells and Arabidopsis thaliana L. (Brassicaceae) as external standards. The estimated nuclear DNA content of male and female B. tabaci was 1.04 and 2.06 pg, respectively. These results corroborated previous reports based on chromosome counting, which showed that B. tabaci males are haploid and females are diploid. Conversion between DNA content and genome size (1 pg DNA = 980 Mbp) indicate that the haploid genome size of B. tabaci is 1020 Mbp, which is approximately five times the size of the genome of the fruitfly Drosophila melanogaster Meigen. These results provide an important baseline that will facilitate genomics-based research for the B. tabaci complex. © CAB International, 2005.

Jiexun, L. i., Xin, L. i., Hua, S. u., Chen, H., & Galbraith, D. W. (2006). A framework of integrating gene relations from heterogeneous data sources: An experiment on Arabidopsis thaliana. Bioinformatics, 22(16), 2037-2043.
BIO5 Collaborators
Hsinchun Chen, David W Galbraith

PMID: 16820427;Abstract:

One of the most important goals of biological investigation is to uncover gene functional relations. In this study we propose a framework for extraction and integration of gene functional relations from diverse biological data sources, including gene expression data, biological literature and genomic sequence information. We introduce a two-layered Bayesian network approach to integrate relations from multiple sources into a genome-wide functional network. An experimental study was conducted on a test-bed of Arabidopsis thaliana. Evaluation of the integrated network demonstrated that relation integration could improve the reliability of relations by combining evidence from different data sources. Domain expert judgments on the gene functional clusters in the network confirmed the validity of our approach for relation integration and network inference. © 2006 Oxford University Press.

Andrés, F., Galbraith, D. W., Talón, M., & Domingo, C. (2009). Analysis of Photoperiod Sensitivity5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiology, 151(2), 681-690.

PMID: 19675157;PMCID: PMC2754645;Abstract:

A great number of plants synchronize flowering with day length. In rice (Oryza sativa), photoperiod is the primary environmental cue that triggers flowering. Here, we show that the s73 mutant, identified in a g-irradiated Bahia collection, displays early flowering and photoperiodic insensitivity due to a null mutation in the PHOTOPERIOD SENSITIVITY5 (SE5) gene, which encodes an enzyme implicated in phytochrome chromophore biosynthesis. s73 mutant plants show a number of alterations in the characteristic diurnal expression patterns of master genes involved in photoperiodic control of flowering, resulting in up-regulation of the floral integrator Heading date3a (Hd3a). Early heading date1 (Ehd1), an additional rice floral activator, was also highly expressed in the s73 mutant, suggesting that SE5 represses Ehd1 in wild-type plants. Silencing of Ehd1 in both Bahia and s73 backgrounds indicated that SE5 regulates Ehd1 expression. The data also indicate that SE5 confers photoperiodic sensitivity through regulation of Hd1. These results provide direct evidence that phytochromes inhibit flowering by affecting both Hd1 and Ehd1 flowering pathways. © 2009 American Society of Plant Biologists.

Zárate, X., Henderson, D. C., Phillips, K. C., Lake, A. D., & Galbraith, D. W. (2010). Development of high-yield autofluorescent protein microarrays using hybrid cell-free expression with combined Escherichia coli S30 and wheat germ extracts. Proteome Science, 8.

PMID: 20546627;PMCID: PMC2906421;Abstract:

Background: Protein-based microarray platforms offer considerable promise as high-throughput technologies in proteomics. Particular advantages are provided by self-assembling protein microarrays and much interest centers around analysis of eukaryotic proteins and their molecular interactions. Efficient cell-free protein synthesis is paramount for the production of self-assembling protein microarrays, requiring optimal transcription, translation, and protein folding. The Escherichia coli S30 extract demonstrates high translation rates but lacks the protein-folding efficiency of its eukaryotic counterparts derived from rabbit reticulocyte and wheat germ extract. In comparison to E. coli, eukaryotic extracts, on the other hand, exhibit slower translation rates and poor overall protein yields. A cell-free expression system that synthesizes folded eukaryotic proteins in considerable yields would optimize in vitro translation for protein microarray assembly.Results: Self-assembling autofluorescent protein microarrays were produced by in situ transcription and translation of chimeric proteins containing a C-terminal Green Fluorescent Protein tag. Proteins were immobilized as array elements using an anti-GFP monoclonal antibody. The amounts of correctly-folded chimeric proteins were quantified by measuring the fluorescence intensity from each array element. During cell-free expression, very little or no fluorescence was observed from GFP-tagged multidomain eukaryotic plant proteins when in vitro translation was performed with E. coli S30 extract. Improvement was seen using wheat germ extract, but fluorescence intensities were still low because of poor protein yields. A hybrid in vitro translation system, combining S30 and wheat germ extracts, produced high levels of correctly-folded proteins for most of the constructs that were tested.Conclusion: The results are consistent with the hypothesis that the wheat germ extract enhances the protein folding capabilities of the in vitro system by providing eukaryotic ribosomes and chaperones and, at the same time, the E. coli S30 extract, which includes an ATP regeneration system, translates the polypeptides at high rates. This hybrid cell-free expression system allows the facile production of high-yield protein arrays suitable for downstream assays. © 2010 Zárate et al; licensee BioMed Central Ltd.

Galbraith, D., Murthi, S., Sankaranarayanan, S., Xia, B., Lambert, G. M., Rodríguez, J. J., & Galbraith, D. W. (2005). Performance analysis of a dual-buffer architecture for digital flow cytometry. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 66(2).

Most current commercial flow cytometers employ analog circuitry to provide feature values describing the pulse waveforms produced from suspended cells and particles. This restricts the type of features that can be extracted (typically pulse height, width, and integral) and consequently places a limit on classification performance. In previous work, we described a first-generation digital data acquisition and processing system that was used to demonstrate the classification advantages provided by the extraction of additional waveform features. An improved version of the system is discussed in this paper, focusing on dual-buffering to ensure increased pulse capture. A mathematical model of the system is also presented for performance analysis.