Deepta Bhattacharya

Deepta Bhattacharya

Professor, Immunobiology
Professor, Surgery
Professor, Cancer Biology - GIDP
Professor, Genetics - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-8088

Research Interest

Research in the Bhattacharya lab focuses on molecular approaches to direct B cell differentiation to establish immunity to infectious disease, and stem cell differentiation for regenerative medicine. Current projects in the lab include: 1) Understanding the cellular basis of antibody-mediated immunity to variable viruses. After infection or vaccination, B cells that recognize the pathogen proliferate and undergo a massive level of expansion. Upon clearance of the infection a small fraction of the "best" B cells are retained to become memory B cells or long-lived plasma cells. Our recent work has established that memory B cells are excellent at recognizing not only the original pathogen, but also mutant escape variants of the pathogen. In contrast, long-lived plasma cells are highly specific only for the original pathogen. We are studying the transcription factors that regulate the memory B cell vs. long-lived plasma cell fate, and are studying mechanisms to alter this fate to provide effective immunity against mutable viruses such as influenza and Dengue. 2) Identifying molecular regulators of the duration of immunity. Most clinically used vaccines rely on the production of antibodies to confer immunity. The duration of immunity can vary greatly between different vaccines, yet the molecular basis of this remains unknown. Current efforts are focused on the identification of genes that regulate plasma cell lifespan and on the features of the vaccine that confer durable antibody immunity. 3) Engineering human pluripotent stem cells to generate antibody-mediated immunity. A small fraction of patients infected with HIV or dengue virus, or vaccinated against influenza develop remarkable antibodies that neutralize nearly all clinical isolates of these viruses. Yet it is unclear how to induce these types of antibodies in the broader population through standard vaccination. Using novel targeted nuclease technologies, we are engineering human embryonic stem cells to express these antibodies and differentiating them into transplantable long-lived plasma cells. The long-term goal of this project is to provide permanent immunity to recipients of these engineered plasma cells.

Publications

Chou, C., Verbaro, D. J., Tonc, E., Holmgren, M., Cella, M., Colonna, M., Bhattacharya, D., & Egawa, T. (2016). The Transcription Factor AP4 Mediates Resolution of Chronic Viral Infection through Amplification of Germinal Center B Cell Responses. Immunity, 45(3), 570-582.

B cells diversify and affinity mature their antigen receptor repertoire in germinal centers (GCs). GC B cells receive help signals during transient interaction with T cells, yet it remains unknown how these transient T-B interactions in the light zone sustain the subsequent proliferative program of selected B cells that occurs in the anatomically distant dark zone. Here, we show that the transcription factor AP4 was required for sustained GC B cell proliferation and subsequent establishment of a diverse and protective antibody repertoire. AP4 was induced by c-MYC during the T-B interactions, was maintained by T-cell-derived interleukin-21 (IL-21), and promoted repeated rounds of divisions of selected GC B cells. B-cell-specific deletion of AP4 resulted in reduced GC sizes and reduced somatic hypermutation coupled with a failure to control chronic viral infection. These results indicate that AP4 integrates T-cell-mediated selection and sustained expansion of GC B cells for humoral immunity.

Bednarski, J. J., Nickless, A., Bhattacharya, D., Amin, R. H., Schlissel, M. S., & Sleckman, B. P. (2012). RAG-induced DNA double-strand breaks signal through Pim2 to promote pre-B cell survival and limit proliferation. The Journal of experimental medicine, 209(1), 11-7.

Interleukin 7 (IL-7) promotes pre-B cell survival and proliferation by activating the Pim1 and Akt kinases. These signals must be attenuated to induce G1 cell cycle arrest and expression of the RAG endonuclease, which are both required for IgL chain gene rearrangement. As lost IL-7 signals would limit pre-B cell survival, how cells survive during IgL chain gene rearrangement remains unclear. We show that RAG-induced DNA double-strand breaks (DSBs) generated during IgL chain gene assembly paradoxically promote pre-B cell survival. This occurs through the ATM-dependent induction of Pim2 kinase expression. Similar to Pim1, Pim2 phosphorylates BAD, which antagonizes the pro-apoptotic function of BAX. However, unlike IL-7 induction of Pim1, RAG DSB-mediated induction of Pim2 does not drive proliferation. Rather, Pim2 has antiproliferative functions that prevent the transit of pre-B cells harboring RAG DSBs from G1 into S phase, where these DNA breaks could be aberrantly repaired. Thus, signals from IL-7 and RAG DSBs activate distinct Pim kinase family members that have context-dependent activities in regulating pre-B cell proliferation and survival.

Czechowicz, A., Kraft, D., Weissman, I. L., & Bhattacharya, D. (2007). Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science (New York, N.Y.), 318(5854), 1296-9.

Upon intravenous transplantation, hematopoietic stem cells (HSCs) can home to specialized niches, yet most HSCs fail to engraft unless recipients are subjected to toxic preconditioning. We provide evidence that, aside from immune barriers, donor HSC engraftment is restricted by occupancy of appropriate niches by host HSCs. Administration of ACK2, an antibody that blocks c-kit function, led to the transient removal of >98% of endogenous HSCs in immunodeficient mice. Subsequent transplantation of these mice with donor HSCs led to chimerism levels of up to 90%. Extrapolation of these methods to humans may enable mild but effective conditioning regimens for transplantation.

Karsunky, H., Inlay, M. A., Serwold, T., Bhattacharya, D., & Weissman, I. L. (2008). Flk2+ common lymphoid progenitors possess equivalent differentiation potential for the B and T lineages. Blood, 111(12), 5562-70.

Mature blood cells develop from multipotent hematopoietic stem cells through a series of sequential intermediates in which the developmental potential for particular blood lineages is progressively extinguished. We previously reported the identification of one of these developmental intermediates, the common lymphoid progenitor (CLP), which can give rise to T cells, B cells, dendritic cells (DCs), and natural killer cells (NKs), but lacks myeloid and erythroid potential. Recently, several studies have suggested that the T-cell and DC potential of CLP is limited or absent, and/or that CLP contains significant myeloid potential. Here, we show that the originally identified CLP population can be divided into functionally distinct subsets based on the expression of the tyrosine kinase receptor, Flk2. The Flk2(+) subset contains robust in vivo and in vitro T-cell, B-cell, DC, and NK potential, but lacks myeloid potential and, therefore, represents an oligopotent, lymphoid-restricted progenitor. This population of cells does not appear to be B cell-biased and robustly reconstitutes both B and T lineages in vivo, consistent with its being a physiologic progenitor of both of these subsets. Thus, Flk2 expression defines a homogeneous, readily obtainable subset of bone marrow CLP that is completely lymphoid-committed and can differentiate equivalently well into both B and T lineages.

Forsberg, E. C., Bhattacharya, D., & Weissman, I. L. (2006). Hematopoietic stem cells: expression profiling and beyond. Stem cell reviews, 2(1), 23-30.

This review focuses on the genomics of mouse hematopoiesis, but also draws parallels to other systems and discusses issues common to the analysis of rare populations such as stem cells. As examples from the mouse blood forming system are used to illustrate several points, the authors first give a brief introduction to mouse hematopoiesis as a model system. We review the multiple microarray analyses that have been performed on various mouse hematopoietic subpopulations and comment on both technical and biological aspects of such experiments. The concept of stemness is discussed, and the importance of biological function of gene products, protein-protein interactions and molecular pathways highlighted. Finally, the authors discuss some major unresolved issues in hematopoiesis and discuss the potential uses of future microarray analysis as well as other genomic and functional approaches that might prove useful to further our understanding of hematopoiesis and other stem cell systems.