Dominic V Mcgrath

Dominic V Mcgrath

Professor, Chemistry and Biochemistry-Sci
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-4690

Research Interest

Dominic Mcgrath, PhD, set forth a program which involves the use of organic synthesis for the design, development, and application of new concepts in macromolecular, supramolecular, and materials chemistry. Research efforts span a number of areas in the chemical sciences and include studies of: 1) chiral dendritic macromolecules and the effect of chiral subunits on dendrimer conformation, 2) photochromic dendrimers and linear polymers which undergo structural changes in response to visible light, 3) liquid crystalline materials based on dendritic and photochromic mesogens, and 4) synthesis of new ligands based on saturated nitrogen heterocycles.A continuing interest remains in the effect of structural perturbations on the properties and functional of dendritic macromolecules. Part of this research addresses the design, synthesis, and study of dendrimeric materials containing chiral moieties in the interior for influencing the conformational order of these 3-dimensional macromolecules. An ultimate goal is to develop materials active for the selective clathration of small guest molecules. Potential applications include chemical separations, sensor technology, environmental remediation, and asymmetric catalysis.Dr. Mcgrath and his lab team recently developed several new classes of dendritic materials containing photochromic subunits. As nature uses light energy to alter function in photoresponsive systems such as photosynthesis, vision, phototropism, and phototaxis, they use light energy to drive gross topological or constitutional changes in fundamentally new dendritic architectures with precisely placed photoresponsive subunits. In short, they can drive dendrimer properties with light stimuli. Two entirely new classes of photoresponsive dendritic macromolecules have been developed and include: 1) photochromic dendrimers and 2) photolabile dendrimers. Dr. Mcgrath anticipates that switchable and degradable dendrimers of this type will have application in small molecule transport systems based on their ability to reversibly encapsulate guest molecules. He continues to develop these materials as potential transport hosts and photoresponsive supramolecular assemblies.

Publications

Chen, X., Thomas, J., Gangopadhyay, P., Norwood, R. A., Peyghambarian, N., & McGrath, D. V. (2009). Modification of symmetrically substituted phthalocyanines using click chemistry: Phthalocyanine nanostructures by nanoimprint lithography. Journal of the American Chemical Society, 131(38), 13840-13843. doi:http://doi.org/10.1021/ja905683g

PMID: 19772367;Abstract:

Phthalocyanines (Pcs) are commonly applied to advanced technologies such as optical limiting, photodynamic therapy (PDT), organic field-effect transistors (OFETs), and organic photovoltaic (OPV) devices, where they are used as the p-type layer. An approach to Pc structural diversity and the incorporation of a functional group that allows fabrication of solvent resistant Pc nanostructures formed by using a newly developed nanoimprint by melt processing (NIMP) technique, a variant of standard nanoimprint lithography (NIL), is reported. Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), a click chemistry reaction, serves as an approach to structural diversity in Pc macrocycles. We have prepared octaalkynyl Pc 1b and have modified this Pc using the CuAAC reaction to yield four Pc derivatives 5a-5d with different peripheral substituents on the macrocycle. One of these derivatives, 5c, has photo-cross-linkable cinnamate residues, and we have demonstrated the fabrication of robust cross-linked photopatterned and imprinted nanostructures from this material. © 2009 American Chemical Society.

Mayukh, M., Macech, M. R., Placencia, D., Cao, Y., Armstrong, N. R., & McGrath, D. V. (2015). Solution Processed Titanyl Phthalocyanines as Donors in Solar Cells: Photoresponse to 1000 nm. ACS Applied Materials and Interfaces, 7(43), 23912-23919. doi:http://dx.doi.org/10.1021/acsami.5b05900

We report a route to thin-film polymorphs of soluble TiOPc derivatives that exhibit similar near-IR absorptivities as vapor deposited thin-films of the parent TiOPc chromophore (phase-I and phase-II polymorphs) and demonstrate that solution-processed planar and bulk heterojunction solar cells fabricated with one of these derivatives exhibited photoactivity throughout the same near-IR wavelength range without compromising VOC. Solution-processed thin-films of soluble octakis(alkylthio)-substituted TiOPc derivatives 1–3 exhibit absorption extending to 1000 nm. When incorporated into OPV devices, the contributions from the lowest CT excitonic state (QB band) of 1 to device performance were evident in both PHJ and BHJ architectures, indicating sufficient driving force for PIET. This contribution was improved via intimate mixing of donor and acceptor molecules in a BHJ architecture, albeit with a decrease in efficiency. IPCE of the best performing BHJ device revealed a contribution from 1 exceeding that of acceptor PCBM, and extending to 1000 nm.

D'Ambruoso, G. D., Ross, E. E., Armstrong, N. R., & Mcgrath, D. V. (2009). Site-isolated, intermolecularly photocrosslinkable and patternable dendritic quinacridones. Chemical communications (Cambridge, England), 3222-3224. doi:http://doi.org/10.1039/B901897B

Quinacridone-cored dendrimers with photocrosslinkable cinnamate moieties on the periphery can be patterned down to 5 micron features while retaining luminescence.

Ortiz, A., Shanahan, C. S., Sisk, D. T., Perera, S. C., Rao, P., & McGrath, D. V. (2010). Improved iterative synthesis of linearly disassembling dendrons. Journal of Organic Chemistry, 75(18), 6154-6162.

PMID: 20738148;Abstract:

Figure presented. We report a significant improvement in the synthesis of disassembling dendritic structures by using 4-hydroxy-3-nitrobenzoic acid as the building block. We have prepared multigram quantities of first- through third-generation linearly disassembling dendrons containing a [3-N,4-O]-benzylaryl ether disassembly pathway, capped by a vanillin-derived phenyl allyl ether trigger, and a p-nitrophenoxy (PNP) reporter group. The disassembly process of these materials was initiated by allyl deprotection and monitored by the absorbance of the PNP reporter unit in the UV-vis. Modification of the disassembly conditions for the allyl trigger resulted in decreased disassembly times, decreased incubation time for onset of disassembly from minutes to seconds, and allowed observation of indicative rate differences between generations not seen with the previously reported conditions. © 2010 American Chemical Society.

McElhanon, J. R., & McGrath, D. V. (2000). Toward chiral polyhydroxylated dendrimers. Preparation and chiroptical properties. Journal of Organic Chemistry, 65(11), 3525-3529.

Abstract:

Four dendrimers (1b-4b) containing chiral vicinal diol-based subunits were prepared from their acetonide-protected precursors (1a-4a). The optical activity of these chiral dendritic structures was successfully modeled using structurally similar, low molecular weight model compounds. Using the [Φ](d) values of the low molecular weight model compounds 5b-7b, we calculated [Φ](d) values for dendrimers 1b-4b that agree to within 4.5% of the observed values. Agreement between the optical activity of the model compounds and that of the dendrimers leads to the conclusion that the conformational equilibria of the dendrimer subunits are not perturbed relative to those of the model compounds.