Eniko T Enikov

Eniko T Enikov

Professor, Aerospace-Mechanical Engineering
Associate Professor, BIO5 Institute
Department Affiliations
(520) 621-4506

Work Summary

Dr. Enikov's area of expertise is the design of micro-actuators, MEMS devices, and sensors. Ongoing projects include the production of Inflatable Drug-Delivery Stents through the process of Dynamic Stabilization of Electro-Spinning. The research will examine theoretically the feasibility of trapping charged fibers and will establish the required trapping parameters.

Research Interest

Dr. Enikov's area of expertise is the design of micro-actuators, MEMS devices, and sensors. After completion of his training, he established the Advanced Micro- and Nanosystems Laboratory at the University of Arizona, where they have carried out numerous research projects involving precision assembly of micro-systems under optical feedback, development of wet actuators using ion-exchange polymers, pressure sensors, and accelerometers. In the last 8-years, his research has applied micro-technology to the development of medical devices. More specifically, they have developed a through-the-eye lid tactile tonometer capable of estimating intraocular pressure using an array of MEMS sensors. A second invention pertains to the development of an implantable ventricular peritoneal shunt with flow sensing capabilities. The present project represents a major focus of his laboratory. They have completed several early-stage studies on tactile tonometery supporting the present application. Given Dr. Enikov's technical background and prior effort in the area of tactile tonometery, he believes he is uniquely qualified to lead the proposed effort.


Enikov, E. T., & Lazarov, K. V. (2004). Hybrid micro-meso mechanical switch array for tactile displays. American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS, 181-188.


Traditional MEMS actuators have limited stroke and force characteristics. This paper describes the development of a novel hybrid actuation solution, which utilizes a micromachined actuator array to provide switching of mechanical motion of a larger meso-scale piezo-electric actuator. One motivating application of this technology is the development of a tactile display, where discrete mechanical actuators apply vibratory excitation at discrete locations on the skin. Specifically, this paper describes the development fabrication and characterization of a 4 × 5 micro-actuator array of individual vibrating pixels for fingertip tactile communication. The individual pixels are turned ON and OFF by pairs of microscopic thermal actuators, while the main vibration is generated by a vibrating piezo-electric plate. A thermo-electric and non-linear thermo-elastic models have been developed to account for the temperature dependence of the electrical resistance and the lateral buckling of the hot, respectively. Comparison between analytical and finite element models indicated very good agreement, confirming that the buckling of the hot arm has most significant impact in the overall actuator performance. The fabrication sequence and the actuation performance of the array are also presented. Copyright © 2004 by ASME.

Swan, E., Schwiegerling, J., Peyman, G., & Enikov, E. T. (2014). Photostress Testing Device for Diagnosing Retinal Disease. Photonics, 1(3), 211-219.
Boyd, J. G., & Enikov, E. T. (2000). Finite element analysis of electric field assisted bonding. Proceedings of SPIE - The International Society for Optical Engineering, 3992, 306-318.


An anodic bond is modeled as a moving nonmaterial line forming the intersection of three material surfaces representing the unbonded conductor, the unbonded insulator, and the bonded interface. The component mass balance equations, Gauss' law, and the linear momentum equations are placed in a finite element formulation, which is used to predict the evolution of the sodium ion concentration, electric potential, and stress during anodic bonding of Pyrex glass and silicon.

Sun, Y., Nelson, B. J., Potasek, D. P., & Enikov, E. (2002). A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives. Journal of Micromechanics and Microengineering, 12(6), 832-840.


This paper presents design, fabrication and calibration results for a novel 2-DOF capacitive force sensor capable of resolving forces up to 490 μN with a resolution of 0.01 μN in x, and up to 900 μN with a resolution of 0.24 μN in y. A simple fabrication process using deep reactive ion etching (DRIE) on silicon-on-insulator (SOI) wafers forms the 3D high aspect ratio structure. A transverse mode comb drive movement is used to greatly improve device sensitivity. Among other advantages of the developed process is a dice-free release of wafer structures, allowing fragile structures to be individually packaged. Notching or footing effects and bowing effects are well-known problems in DRIE on SOI wafers. Techniques to overcome notching and bowing effects using a PlasmaTherm SLR-770 etcher are presented that do not require hardware modifications. The application of the force sensor is for providing real-time force feedback during individual cell manipulation tasks.

Enikov, E., McCafferty, S. J., Schwiegerling, J. T., & Enikov, E. T. (2012). Thermal load from a CO2 laser radiant energy source induces changes in corneal surface asphericity, roughness, and transverse contraction. Investigative ophthalmology & visual science, 53(7).

We examined corneal surface response to an isolated thermal load.