Eniko T Enikov

Eniko T Enikov

Professor, Aerospace-Mechanical Engineering
Associate Professor, BIO5 Institute
Department Affiliations
Contact
(520) 621-4506

Work Summary

Dr. Enikov's area of expertise is the design of micro-actuators, MEMS devices, and sensors. Ongoing projects include the production of Inflatable Drug-Delivery Stents through the process of Dynamic Stabilization of Electro-Spinning. The research will examine theoretically the feasibility of trapping charged fibers and will establish the required trapping parameters.

Research Interest

Dr. Enikov's area of expertise is the design of micro-actuators, MEMS devices, and sensors. After completion of his training, he established the Advanced Micro- and Nanosystems Laboratory at the University of Arizona, where they have carried out numerous research projects involving precision assembly of micro-systems under optical feedback, development of wet actuators using ion-exchange polymers, pressure sensors, and accelerometers. In the last 8-years, his research has applied micro-technology to the development of medical devices. More specifically, they have developed a through-the-eye lid tactile tonometer capable of estimating intraocular pressure using an array of MEMS sensors. A second invention pertains to the development of an implantable ventricular peritoneal shunt with flow sensing capabilities. The present project represents a major focus of his laboratory. They have completed several early-stage studies on tactile tonometery supporting the present application. Given Dr. Enikov's technical background and prior effort in the area of tactile tonometery, he believes he is uniquely qualified to lead the proposed effort.

Publications

Enikov, E. T., & Lazarov, K. V. (2001). Optically transparent gripper for microassembly. Proceedings of SPIE - The International Society for Optical Engineering, 4568, 40-49.

Abstract:

Production of complex Micro-Opto Electro-Mechanical Systems (MOEMS) often requires assembly of a system from individual components built by mutually incompatible processes. This fabrication step also constitutes the largest portion of the total cost (about 80%), and is one of the major roadblocks to successfully implementing a complex microsystem. Our previous experience with such systems shows, that gripping and manipulation of microparts significantly differs from the assembly of macroscopic devices. The main difference stems from the increased role of the surface electrostatic forces and the reduced influence of body forces such as gravity. This paper describes one possible use of the surface forces in the development of a novel optically transparent electrostatic microgripper. The principle of operation, design and simulation of the new device are described. Several models describing the gripping force are also presented. The out-of-plane and in-plane holding (frictional) forces are measured as a function of the applied voltage for two common materials - silicon and nickel. The fabrication sequence and the materials used are discussed.

McCafferty, S. J., Schwiegerling, J. T., & Enikov, E. T. (2012). Thermal load from a CO2 laser radiant energy source induces changes in corneal surface asphericity, roughness, and transverse contraction. Investigative Ophthalmology and Visual Science, 53(7), 4279-4288.

PMID: 22661462;Abstract:

PURPOSE. We examined corneal surface response to an isolated thermal load. METHODS. Cadaveric porcine eyes were pressurized and stabilized for processing and imaging. A carbon dioxide (CO2) laser (1.75 W) delivered a uniform disk of continuous wave thermal radiant energy to the exposed corneal stromal surface without ablation. Thermal load was determined by measuring corneal surface temperature during CO2 laser irradiation. Corneal profilometry was measured with broadband optical interferometry before and after CO2 laser irradiation. Photomicrographs of the stromal surface were taken before and after irradiation, and the images were superimposed to examine changes in positional marks, examining mechanical alterations in the stromal surface. RESULTS. Thermal load from uniform laser irradiation without ablation produces central corneal steepening and paracentral flattening in the central 3-mm diameter. Q values, measuring asphericity in the central 2 mm of the cornea increased significantly and it was correlated with the temperature rise (R2=0.767). Surface roughness increased significantly and also was correlated with temperature rise (R2=0.851). The central stromal surface contracted and underwent characteristic morphologic changes with the applied thermal load, which correlated well with the temperature rise (R2 = 0.818). CONCLUSIONS. The thermal load created by CO2 laser irradiation creates a characteristic spectrum of morphologic changes on the porcine corneal stromal surface that correlates to the temperature rise and is not seen with inorganic, isotropic material. The surface changes demonstrated with the CO2 laser likely are indicative of temperature-induced transverse collagen fibril contraction and stress redistribution. Refractive procedures that produce significant thermal load should be cognizant of these morphologic changes. © 2012 The Association for Research in Vision and Ophthalmology, Inc.

Enikov, E. T., & Lazarov, K. V. (2003). Metallic microactuators based on sacrificial layer SU8 release. American Society of Mechanical Engineers, Micro-Electromechanical Systems Division Publication (MEMS), 5, 133-139.

Abstract:

Thermal micro-actuators are a promising solution to the need for large-displacement, low-power MEMS actuators. Potential applications of these devices are micro-relays, tunable impedance RF networks, and miniature medical instrumentation. In this paper the development of thermal microactuators based on SU8 is described. A polymeric sacrificial layer allows the removal of the SU8 mold to occur without the use of harsh etching conditions. In addition to silicon non-traditional for MEMS substrates such as RF-printed circuit boards have also been successfully utilized to fabricate the devices. The PCB-based devices exhibited similar characteristics, thus opening the possibility of integrating RF MEMS directly on PCBs. The actuators were benchmarked with respect to power consumption, stroke, and response time. The fabricated nickel actuators are shown to be robust with displacements in the range of 76 micrometers using 80 mW of power. Actual cooling transients were captured using a two-step constant-current excitation method. It is further demonstrated through analytical models that the thermal cooling times limit the bandwidth of these devices below 1KHz. Several commercially relevant applications of the developed actuators are also discussed. One such application is a vibro-tactile display for disabled individuals.