Eniko T Enikov

Eniko T Enikov

Professor, Aerospace-Mechanical Engineering
Associate Professor, BIO5 Institute
Department Affiliations
Contact
(520) 621-4506

Work Summary

Dr. Enikov's area of expertise is the design of micro-actuators, MEMS devices, and sensors. Ongoing projects include the production of Inflatable Drug-Delivery Stents through the process of Dynamic Stabilization of Electro-Spinning. The research will examine theoretically the feasibility of trapping charged fibers and will establish the required trapping parameters.

Research Interest

Dr. Enikov's area of expertise is the design of micro-actuators, MEMS devices, and sensors. After completion of his training, he established the Advanced Micro- and Nanosystems Laboratory at the University of Arizona, where they have carried out numerous research projects involving precision assembly of micro-systems under optical feedback, development of wet actuators using ion-exchange polymers, pressure sensors, and accelerometers. In the last 8-years, his research has applied micro-technology to the development of medical devices. More specifically, they have developed a through-the-eye lid tactile tonometer capable of estimating intraocular pressure using an array of MEMS sensors. A second invention pertains to the development of an implantable ventricular peritoneal shunt with flow sensing capabilities. The present project represents a major focus of his laboratory. They have completed several early-stage studies on tactile tonometery supporting the present application. Given Dr. Enikov's technical background and prior effort in the area of tactile tonometery, he believes he is uniquely qualified to lead the proposed effort.

Publications

Sagi, O. T., Maynard, D., & Enikov, E. (2011). Capacitive transducer for condition based maintenance after harsh landing events. AUTOTESTCON (Proceedings), 286-291.

Abstract:

The objective of this work is to identify design parameters for a capacitive sensor designed to recognize and record helicopter harsh landing events. Harsh landing events are typically associated with landing speeds exceeding 2.5 m/s [1] and require mandatory structural inspection resulting in down-times that could last a week or longer. In cases where no visible damage occurs, harsh-landing events might be difficult to identify and record. This paper presents a finite element analysis of the acceleration profile at different locations of the skid of a Bell 206 L4 helicopter which is then used to design and test a low-cost capacitive sensor for monitoring harsh landing events. Time history and histograms of the acceleration signal during normal and harsh landings are presented. The capacitive accelerometer is designed to operate in the 10g to 360g range. The sensor is integrated directly on a wiring board and is readout by a micro-controller with a capacitive ASIC. Details of the sensor design, fabrication, and testing are presented. The presented material also provides hard-to-find design data on the structural accelerations which can occur during harsh landing. © 2011 IEEE.

Enikov, E. T., Madarász, M., & Polyvás, P. P. (2012). Experimental and numerical analysis of ocular tactile tonometry. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2, 259-267.

Abstract:

This article describes the experimental and numerical analysis of a novel trans-scleral tonometer based on the use of an instrumented form of digital palpation tonometry. Similar to manual digital palpation tonometery (estimation of the eye pressure via tactile touch), the novel ocular tactile tonometer utilizes multiple force probes to gather force data from indentation experiments. The presented experimental and numerical analysis shows that force data obtained from these probes correlate with the intraocular pressure (IOP) of the eye. Enucleated porcine eyes were used to validate the approach. The observed hysteresis in the force data was analyzed using an analytical model that accounts for the outflow of the aqueous humor as well as experiments at different indentation rates. Experimental data from eye distention and indentation tests were then used to infer the conditions under which the novel tonometer would be expected to have an accuracy of 1 mmHg. Analysis of the data shows that visco-elastic behavior of the scleral tissue is the primary factor responsible for the observed hysteresis. Further analysis of the data shows that indentation rates should be kept below 0.5 mm/sec for a pressure range of 10-35 mmHg. A conceptual through-the-eye-lid ocular tactile tonometer based on four probes is also presented along with numerical validation of the measured response. Copyright © 2012 by ASME.

Vohnout, S., Engelman, M., & Enikov, E. (2011). Miniature MEMS-based data recorder for prognostics and health management (PHM). IEEE Instrumentation and Measurement Magazine, 14(4), 18-26.

Abstract:

Novel prognostic sensors and reasoner algorithms are the core technology for detecting defects caused by accumulation of fatigue damage in electrical and mechanical systems over time. However, serious technical challenges to implementing a general health management strategy for helicopters and military aircraft still exist. For example, severe heat and vibration make it difficult to distinguish fault signatures from environmental noise. Moreover, bearing loads are very dynamic, making it difficult to distinguish subtle wear-out signatures from normal acoustic patterns. Detection can be improved by increasing the number of sensor locations, but this option is unattractive from the standpoint of added cost, weight, and data overhead of such a system. © 2011 IEEE.

Enikov, E. T., Edes, G., Skoch, J., & Anton, R. (2014). Application of GMR Sensors to Liquid Flow Sensing. Journal of Microelectromechanical Systems, online.
Polyvás, P., Madarász, M., & Enikov, E. T. (2013). Development of Tactile Eye Stiffness Sensor. Experimental Mechanics, 53(5), 819-828.

Abstract:

This article describes the design of a novel trans-scleral tonometer based on the use of multiple force sensors forming a mechanical stiffness sensor. The approach is akin to an instrumented form of digital palpation tonometry in which manual paplation is used to infer the stiffness, and hence, the intraocular pressure of the eye. Force indentation data from multiple probes has been shown to correlate with the intraocular pressure (IOP) using encucleated porcine eyes. A noticeable amount of hysteresis has been observed during indentations at higher rate. Analysis of the experimental data indicates that stress relaxation (accommodation) in the visco-elastic corneo-scleral shell is the primary factor of the observed hysteresis. Further tests under different indentation rates show that the novel tonometer is expected to have an accuracy of ±1 mmHg when the indentation rate is kept below 0.5 mm/sec for pressure range of 10-35 mmHg. Using a calibrated finite element model of the measurement, the effect of lateral and angular misalignment is also examined. The results show that the position and orientation of the tactile sensor has to be controlled to within ±1 mm and ±3° in order to achieve a target accuracy of ±1 mmHg. © 2012 Society for Experimental Mechanics.