Erika D Eggers

Erika D Eggers

Associate Department Head, Research - Physiology
Member of the Graduate Faculty
Professor, BIO5 Institute
Professor, Biomedical Engineering
Professor, Neuroscience - GIDP
Professor, Physiological Sciences - GIDP
Professor, Physiology
Primary Department
Department Affiliations
Contact
(520) 626-7137

Work Summary

My laboratory studies how the retina takes visual information about the world and transmits it to the brain. We are trying to understand how this signaling responds to changing amounts of background light and becomes dysfunctional in diabetes.

Research Interest

The broad goal of research in our laboratory is to understand how inhibitory inputs influence neuronal signaling and sensory signal processing in the healthy and diabetic retina. Neurons in the brain receive inputs that are both excitatory, increasing neural activity, and inhibitory, decreasing neural activity. Inhibitory and excitatory inputs to neurons must be properly balanced and timed for correct neural signaling to occur. To study sensory inhibition we use the retina, a unique preparation which can be removed intact and can be activated physiologically, with light, in vitro. Thus using the retina as a model system, we can study how inhibitory synaptic physiology influences inhibition in visual processing. This intact system also allows us to determine the mechanisms of retinal damage in early diabetes. Keywords: neuroscience, diabetes, vision, electrophysiology, light

Publications

Eggers, E. D., & Moore-Dotson, J. M. (2017). Modulation of retinal calcium signaling in early diabetes. TBD.
Moore-Dotson, J. M., Klein, J. S., Mazade, R. E., & Eggers, E. D. (2015). Different types of retinal inhibition have distinct neurotransmitter release properties. Journal of neurophysiology, jn.00447.2014.

Neurotransmitter release varies between neurons due to differences in presynaptic mechanisms such as Ca(2+)-sensitivity and timing. Retinal rod bipolar cells respond to brief dim illumination with prolonged glutamate release that is tuned by the differential release of GABA and glycine from amacrine cells in the inner retina. To test if differences among types of GABA and glycine release are due to inherent amacrine cell release properties, we directly activated amacrine cell neurotransmitter release by electrical stimulation. We found that the timing of electrically evoked inhibitory currents was inherently slow and that the timecourse of inhibition from slowest to fastest was GABAC receptors ˃ glycine receptors ˃ GABAA receptors. Deconvolution analysis showed that the distinct timing was due to differences in prolonged GABA and glycine release from amacrine cells. The timecourses of slow glycine release and GABA release onto GABAC receptors were reduced by Ca(2+)-buffering with EGTA-AM and BAPTA-AM, but faster GABA release onto GABAA receptors was not, suggesting that release onto GABAA receptors is tightly coupled to Ca(2+). The differential timing of GABA release was detected from spiking amacrine cells and not non-spiking A17 amacrine cells that form a reciprocal synapse with rod bipolar cells. Our results indicate that release from amacrine cells is inherently asynchronous and that the source of non-reciprocal rod bipolar cell inhibition differs between GABA receptors. The slow, differential timecourse of inhibition may be a mechanism to match the prolonged rod bipolar cell glutamate release and provide a way to temporally tune information across retinal pathways.