Felicia D Goodrum Sterling

Felicia D Goodrum Sterling

Member of the Graduate Faculty
Professor, BIO5 Institute
Professor, Cancer Biology - GIDP
Professor, Cellular and Molecular Medicine
Professor, Genetics - GIDP
Professor, Immunobiology
Professor, Molecular and Cellular Biology
Primary Department
Department Affiliations
Contact
(520) 626-7468

Work Summary

Work Summary
Dr. Goodrum's long-standing research focus is to understand the molecular virus-host interactions important to human cytomegalovirus (CMV) latency and persistence in the host. She has focused on identifying viral and host determinants mediating the switch between latent and replicative states. The goal of her research program is to define the mechanistic underpinnings of HCMV latency and reactivation to lay the foundation for clinical interventions to control CMV disease in all settings.

Research Interest

Research Interest
Felicia Goodrum earned her Ph.D. from Wake Forest University School of Medicine studying cell cycle restrictions to adenovirus replication. She trained as a postdoctoral fellow at Princeton University in the laboratory of Dr. Thomas Shenk studying human cytomegalovirus latency. Dr. Goodrum joined the faculty at the University of Arizona in 2006. Dr. Goodrum is the recipient of the Howard Temin Award from the National Cancer Institute, the Pew Scholar in Biomedical Sciences Award, and the Presidential Award for Early Career Scientists and Engineers.Dr. Goodrum's research focuses on the complex host-virus interactions that result in viral persistence. Progress in understanding latent programs of persistence have been impeded by the inherent complexity of the herpesviruses and that paucity of adequate model systems. Herpesviruses are extraordinary for their ability to coexist with their host by establishing life-long latent infections. Latency is defined as a reversibly quiescent state during which viral gene expression and replication is highly restricted. Her laboratory studies cytomegalovirus or CMV, one of eight human herpesviruses. CMV is remarkable in that it persists latently in 60-99% of the population, generally in the absence of disease in the immunocompetent host. Reactivation of CMV from latency poses life-threatening disease risks in immunocompromised individuals, particularly transplant patients. CMV infection is also the leading cause of infectious disease-related birth defects, affecting ~1% of live births in the US. Further, the health cost of the latent coexistence of CMV is just beginning to emerge in an association to age-related pathologies including vascular disease, immune dysfunction and frailty. The key to eradicating CMV lies in understanding latency in order to ultimately develop novel antiviral strategies targeting latently infected cells or to prevent reactivation. Our studies aim to define the molecular basis of persistence by defining viral and cellular determinants important to viral persistence and the mechanisms by which these determinants function in relevant cell models. In turn, our work will provide critical insights into how CMV assimilates into and impacts human biology.

Publications

Sansoni, P., Vescovini, R., Fagnoni, F. F., Akbar, A., Arens, R., Chiu, Y., Cičin-Šain, L., Dechanet-Merville, J., Derhovanessian, E., Ferrando-Martinez, S., Franceschi, C., Frasca, D., Fulöp, T., Furman, D., Gkrania-Klotsas, E., Goodrum, F., Grubeck-Loebenstein, B., Hurme, M., Kern, F., , Lilleri, D., et al. (2014). New advances in CMV and immunosenescence. Experimental gerontology, 55, 54-62.

Immunosenescence, defined as the age-associated dysregulation and dysfunction of the immune system, is characterized by impaired protective immunity and decreased efficacy of vaccines. An increasing number of immunological, clinical and epidemiological studies suggest that persistent Cytomegalovirus (CMV) infection is associated with accelerated aging of the immune system and with several age-related diseases. However, current evidence on whether and how human CMV (HCMV) infection is implicated in immunosenescence and in age-related diseases remains incomplete and many aspects of CMV involvement in immune aging remain controversial. The attendees of the 4th International Workshop on "CMV & Immunosenescence", held in Parma, Italy, 25-27th March, 2013, presented and discussed data related to these open questions, which are reported in this commentary.

Caviness, K., Cicchini, L., Rak, M., Umashankar, M., & Goodrum, F. (2014). Complex expression of the UL136 gene of human cytomegalovirus results in multiple protein isoforms with unique roles in replication. Journal of virology, 88(24), 14412-25.

Human cytomegalovirus (HCMV) is a complex DNA virus with a 230-kb genome encoding 170 and up to 750 proteins. The upper limit of this coding capacity suggests the evolution of complex mechanisms to substantially increase the coding potential from the 230-kb genome. Our work examines the complexity of one gene, UL136, encoded within the ULb' region of the genome that is lost during serial passage of HCMV in cultured fibroblasts. UL136 is expressed as five protein isoforms. We mapped these isoforms and demonstrate that they originate from both a complex transcriptional profile and, possibly, the usage of multiple translation initiation sites. Intriguingly, the pUL136 isoforms exhibited distinct subcellular distributions with varying association with the Golgi apparatus. The subcellular localization of membrane-bound isoforms of UL136 differed between when they were expressed exogenously and when they were expressed in the context of viral infection, suggesting that the trafficking of these isoforms is mediated by infection-specific factors. While UL136, like most ULb' genes, was dispensable for replication in fibroblasts, the soluble 23- and 19-kDa isoforms suppressed virus replication. In CD34(+) hematopoietic progenitor cells (HPCs) infected in vitro, disruption of the 23- and 19-kDa isoforms resulted in increased replication and a loss of the latency phenotype, similar to the effects of the UL138 latency determinant encoded within the same genetic locus. Our work suggests a complex interplay between the UL136 isoforms which balances viral replication in multiple cell types and likely contributes to the cell type-dependent phenotypes of the UL133/8 locus and the outcome of HCMV infection.

Goodrum, F. (2016). Human Cytomegalovirus Latency: Approaching the Gordian Knot. Annual Reviews in Virology, 333-357.

Herpesviruses have evolved exquisite virus-host interactions that co-opt or evade a number of host pathways to enable the viruses to persist. Persistence of human cytomegalovirus (CMV), the prototypical betaherpesvirus, is particularly complex in the host organism. Depending on host physiology and the cell types infected, CMV persistence comprises latent, chronic, and productive states that may occur concurrently. Viral latency is a central strategy by which herpesviruses ensure their lifelong persistence. Although much remains to be defined about the virus-host interactions important to CMV latency, it is clear that checkpoints composed of viral and cellular factors exist to either maintain a latent state or initiate productive replication in response to host cues. CMV offers a rich platform for defining the virus-host interactions and understanding the host biology important to viral latency. This review describes current understanding of the virus-host interactions that contribute to viral latency and reactivation.

Caviness, K., Bughio, F., Crawford, L. B., Streblow, D. N., Nelson, J. A., Caposio, P., & Goodrum, F. (2016). Complex Interplay of the UL136 Isoforms Balances Cytomegalovirus Replication and Latency. mBio, 7(2), e01986.

Human cytomegalovirus (HCMV), a betaherpesvirus, persists indefinitely in the human host through poorly understood mechanisms. The UL136 gene is carried within a genetic locus important to HCMV latency termed the UL133/8 locus, which also carries UL133, UL135, and UL138. Previously, we demonstrated that UL136 is expressed as five protein isoforms ranging from 33-kDa to 19-kDa, arising from alternative transcription and, likely, translation initiation mechanisms. We previously showed that the UL136 isoforms are largely dispensable for virus infection in fibroblasts, a model for productive virus replication. In our current work, UL136 has emerged as a complex regulator of HCMV infection in multiple contexts of infection relevant to HCMV persistence: in an endothelial cell (EC) model of chronic infection, in a CD34(+) hematopoietic progenitor cell (HPC) model of latency, and in an in vivo NOD-scid IL2Rγc (null) humanized (huNSG) mouse model for latency. The 33- and 26-kDa isoforms promote replication, while the 23- and 19-kDa isoforms suppress replication in ECs, in CD34(+) HPCs, and in huNSG mice. The role of the 25-kDa isoform is context dependent and influences the activity of the other isoforms. These isoforms localize throughout the secretory pathway, and loss of the 33- and 26-kDa UL136 isoforms results in virus maturation defects in ECs. This work reveals an intriguing functional interplay between protein isoforms that impacts virus replication, latency, and dissemination, contributing to the overall role of the UL133/8 locus in HCMV infection.

Umashankar, M., Rak, M., Bughio, F., Zagallo, P., Caviness, K., & Goodrum, F. D. (2014). Antagonistic determinants controlling replicative and latent states of human cytomegalovirus infection. Journal of virology, 88(11), 5987-6002.

The mechanisms by which viruses persist and particularly those by which viruses actively contribute to their own latency have been elusive. Here we report the existence of opposing functions encoded by genes within a polycistronic locus of the human cytomegalovirus (HCMV) genome that regulate cell type-dependent viral fates: replication and latency. The locus, referred to as the UL133-UL138 (UL133/8) locus, encodes four proteins, pUL133, pUL135, pUL136, and pUL138. As part of the ULb' region of the genome, the UL133/8 locus is lost upon serial passage of clinical strains of HCMV in cultured fibroblasts and is therefore considered dispensable for replication in this context. Strikingly, we could not reconstitute infection in permissive fibroblasts from bacterial artificial chromosome clones of the HCMV genome where UL135 alone was disrupted. The loss of UL135 resulted in complex phenotypes and could ultimately be overcome by infection at high multiplicities. The requirement for UL135 but not the entire locus led us to hypothesize that another gene in this locus suppressed virus replication in the absence of UL135. The defect associated with the loss of UL135 was largely rescued by the additional disruption of the UL138 latency determinant, indicating a requirement for UL135 for virus replication when UL138 is expressed. In the CD34(+) hematopoietic progenitor model of latency, viruses lacking only UL135 were defective for viral genome amplification and reactivation. Taken together, these data indicate that UL135 and UL138 comprise a molecular switch whereby UL135 is required to overcome UL138-mediated suppression of virus replication to balance states of latency and reactivation.