Heddwen L Brooks
Associate Professor, Pharmacology
Professor, BIO5 Institute
Professor, Biomedical Engineering
Professor, Medicine
Professor, Physiological Sciences - GIDP
Professor, Physiology
Primary Department
Department Affiliations
(520) 626-7702
Research Interest
Dr. Brooks is a renal physiologist and has developed microarray technology to address in vivo signaling pathways involved in the hormonal regulation of renal function. Current areas of research in the Brooks Laboratory are focused on importance of sex differences in the onset of postmenopausal hypertension and diabetic kidney disease and identifying new therapies for polycystic kidney disease and lithium-induced nephropathy.

Publications

Brooks, H., Cai, Q., McReynolds, M. R., Keck, M., Greer, K. A., Hoying, J. B., & Brooks, H. L. (2007). Vasopressin receptor subtype 2 activation increases cell proliferation in the renal medulla of AQP1 null mice. American journal of physiology. Renal physiology, 293(6).

Aquaporin (AQP) 1 null mice have a defect in the renal concentrating gradient because of their inability to generate a hyperosmotic medullary interstitium. To determine the effect of vasopressin on renal medullary gene expression, in the absence of high local osmolarity, we infused 1-deamino-8-d-arginine vasopressin (dDAVP), a V(2) receptor (V(2)R)-specific agonist, in AQP1 null mice for 7 days. cDNA microarray analysis was performed on the renal medullary tissue, and 5,140 genes of the possible 12,000 genes on the array were included in the analysis. In the renal medulla of AQP1 null mice, 245 transcripts were identified as increased by dDAVP infusion and 200 transcripts as decreased (1.5-fold or more). Quantitative real-time PCR measurements confirmed the increases seen for cyclin D1, early growth response gene 1, and activating transcription factor 3, genes associated with changes in cell cycle/growth. Changes in mRNA expression were correlated with changes in protein expression by semiquantitative immunoblotting; cyclin D1 and ATF3 were increased significantly in abundance following dDAVP infusion in the renal medulla of AQP1 null mice (161 and 461%, respectively). A significant increase in proliferation of medullary collecting ducts cells, following V(2)R activation, was identified by proliferating cell nuclear antigen immunohistochemistry; colocalization studies with AQP2 indicated that the increase in proliferation was primarily observed in principal cells of the inner medullary collecting duct (IMCD). V(2)R activation, via dDAVP, increased AQP2 and AQP3 protein abundance in the cortical collecting ducts of AQP1 null mice. However, V(2)R activation did not increase AQP2 protein abundance in the IMCD of AQP1 null mice.

Brooks, H., McReynolds, M. R., Taylor-Garcia, K. M., Greer, K. A., Hoying, J. B., & Brooks, H. L. (2005). Renal medullary gene expression in aquaporin-1 null mice. American journal of physiology. Renal physiology, 288(2).

Mice that lack the aquaporin-1 gene (AQP1) lack a functional countercurrent multiplier mechanism, fail to concentrate the inner medullary (IM) interstitium, and present with a urinary concentrating defect. In this study, we use DNA microarrays to identify the gene expression profile of the IM of AQP1 null mice and corresponding changes in gene expression resulting from a loss of a hypertonic medullary interstitium. An ANOVA analysis model, CARMA, was used to isolate the knockout effect while taking into account experimental variability associated with microarray studies. In this study 5,701 genes of the possible approximately 12,000 genes on the array were included in the ANOVA; 531 genes were identified as demonstrating a >1.5-fold up- or downregulation between the wild-type and knockout groups. We randomly selected 35 genes for confirmation by real-time PCR, and 29 of the 35 genes were confirmed using this method. The overall pattern of gene expression in the AQP1 null mice was one of downregulation compared with gene expression in the renal medullas of the wild-type mice. Heat shock proteins 105 and 94, aldose reductase, adenylate kinase 2, aldolase B, aldehyde reductase 6, and p8 were decreased in the AQP1 null mice. Carboxylesterase 3, matrilin 2, lipocalin 2, and transforming growth factor-alpha were increased in IM of AQP1 null mice. In addition, we observed a loss of vasopressin type 2 receptor mRNA expression in renal medullas of the AQP1 null mice. Thus the loss of the hyperosmotic renal interstitium, due to a loss of the concentrating mechanism, drastically altered not only the phenotype of these animals but also their renal medullary gene expression profile.

Brooks, H. L., Sorensen, A. M., Terris, J., Schultheis, P. J., Lorenz, J. N., Shull, G. E., & Knepper, M. A. (2001). Profiling of renal tubule Na+ transporter abundances in NHE3 and NCC null mice using targeted proteomics. The Journal of physiology, 530(Pt 3), 359-66.

The Na+-H+ exchanger NHE3 and the thiazide-sensitive Na+-Cl- cotransporter NCC are the major apical sodium transporters in the proximal convoluted tubule and the distal convoluted tubule of the kidney, respectively. We investigated the mechanism of compensation that allows maintenance of sodium balance in NHE3 knockout mice and in NCC knockout mice. We used a so-called 'targeted proteomics' approach, which profiles the entire renal tubule with regard to changes in Na+ transporter and aquaporin abundance in response to the gene deletions. Specific antibodies to the Na+ transporters and aquaporins expressed along the nephron were utilized to determine the relative abundance of each transporter. Semiquantitative immunoblotting was used which gives an estimate of the percentage change in abundance of each transporter in knockout compared with wild-type mice. In NHE3 knockout mice three changes were identified which could compensate for the loss of NHE3-mediated sodium absorption. (a) The proximal sodium-phosphate cotransporter NaPi-2 was markedly upregulated. (b) In the collecting duct, the 70 kDa form of the y-subunit of the epithelial sodium channel, ENaC, exhibited an increase in abundance. This is thought to be an aldosterone-stimulated form of y-ENaC. (c) Glomerular filtration was significantly reduced. In the NCC knockout mice, amongst all the sodium transporters expressed along the renal tubule, only the 70 kDa form of the y-subunit of the epithelial sodium channel, ENaC, exhibited an increase in abundance. In conclusion, both mouse knockout models demonstrated successful compensation for loss of the deleted transporter. More extensive adaptation occurred in the case of the NHE3 knockout, presumably because NHE3 is responsible for much more sodium absorption in normal mice than in NCC knockout mice.

Fenton, R. A., & Brooks, H. L. (2014). 2014 Robert W. Berliner Award for Excellence in Renal Physiology. American journal of physiology. Renal physiology.
Goldberg, E. L., Romero-Aleshire, M. J., Renkema, K. R., Ventevogel, M. S., Chew, W. M., Uhrlaub, J. L., Smithey, M. J., Limesand, K. H., Sempowski, G. D., Brooks, H. L., & Nikolich-Žugich, J. (2015). Lifespan-extending caloric restriction or mTOR inhibition impair adaptive immunity of old mice by distinct mechanisms. Aging cell, 14(1), 130-8.
BIO5 Collaborators
Heddwen L Brooks, Kirsten H Limesand

Aging of the world population and a concomitant increase in age-related diseases and disabilities mandates the search for strategies to increase healthspan, the length of time an individual lives healthy and productively. Due to the age-related decline of the immune system, infectious diseases remain among the top 5-10 causes of mortality and morbidity in the elderly, and improving immune function during aging remains an important aspect of healthspan extension. Calorie restriction (CR) and more recently rapamycin (rapa) feeding have both been used to extend lifespan in mice. Preciously few studies have actually investigated the impact of each of these interventions upon in vivo immune defense against relevant microbial challenge in old organisms. We tested how rapa and CR each impacted the immune system in adult and old mice. We report that each intervention differentially altered T-cell development in the thymus, peripheral T-cell maintenance, T-cell function and host survival after West Nile virus infection, inducing distinct but deleterious consequences to the aging immune system. We conclude that neither rapa feeding nor CR, in the current form/administration regimen, may be optimal strategies for extending healthy immune function and, with it, lifespan.