Hendrikus L Granzier

Hendrikus L Granzier

Professor, Cellular and Molecular Medicine
Professor, Molecular and Cellular Biology
Professor, Biomedical Engineering
Professor, Genetics - GIDP
Professor, Physiological Sciences - GIDP
Professor, Physiology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-3641

Work Summary

Our research is focused on elucidating the structure and function of titin and nebulin, two large filamentous proteins found in muscle. We use a range of model systems with a major focus on KO and TG mouse models. The techniques that we use range from single molecule mechanics, (immuno) electron microscopy, exon microarray analysis, in vitro motility assays, low angle X-ray diffraction, cell physiology (including calcium imaging), muscle mechanics, and isolated heart physiology.

Research Interest

Hendrikus Granzier, PhD, studies the mechanisms whereby the giant filamentous protein titin (the largest protein known) influence muscle structure and function. His lab has shown that titin functions as a molecular spring that mediates acute responses to changing pathophysiological states of the heart. They also study the role of titin in cardiac disease, using mouse models with specific modifications in the titin gene, including deciphering the mechanisms that are responsible for gender differences in diastolic dysfunction. An additional focus of Dr. Granzier’s lab is on nebulin, a major muscle protein that causes a severe skeletal muscle disease in humans. Based on previous work, they hypothesize that nebulin is a determinant of calcium sensitivity of contractile force. To test this and other concepts, he uses a nebulin knockout approach in the mouse. Research is multi-faceted and uses cutting-edge techniques at levels ranging across the single molecule, single cell, muscle, and the intact heart. His research group is diverse and has brought together individuals from several continents with expertise ranging from physics and chemistry to cell biology and physiology.

Publications

Granzier, H., Ottenheijm, C. A., Knottnerus, A. M., Buck, D., Luo, X., Greer, K., Hoying, A., Labeit, S., & Granzier, H. L. (2009). Tuning passive mechanics through differential splicing of titin during skeletal muscle development. Biophysical journal, 97(8).

During postnatal development, major changes in mechanical properties of skeletal muscle occur. We investigated passive properties of skeletal muscle in mice and rabbits that varied in age from 1 day to approximately 1 year. Neonatal skeletal muscle expressed large titin isoforms directly after birth, followed by a gradual switch toward progressively smaller isoforms that required weeks-to-months to be completed. This suggests an extremely high plasticity of titin splicing during skeletal muscle development. Titin exon microarray analysis showed increased expression of a large group of exons in neonatal muscle, when compared to adult muscle transcripts, with the majority of upregulated exons coding for the elastic proline-glutamate-valine-lysine (PEVK) region of titin. Protein analysis supported expression of a significantly larger PEVK segment in neonatal muscle. In line with these findings, we found >50% lower titin-based passive stiffness of neonatal muscle when compared to adult muscle. Inhibiting 3,5,3'-tri-iodo-L-thyronine and 3,5,3',5'-tetra-iodo-L-thyronine secretion did not alter isoform switching, suggesting no major role for thyroid hormones in regulating differential titin splicing during postnatal development. In summary, our work shows that stiffening of skeletal muscle during postnatal development occurs through a decrease in titin isoform size, due mainly to a marked restructuring of the PEVK region of titin.

Granzier, H., Chung, C. S., Bogomolovas, J., Gasch, A., Hidalgo, C. G., Labeit, S., & Granzier, H. L. (2011). Titin-actin interaction: PEVK-actin-based viscosity in a large animal. Journal of biomedicine & biotechnology, 2011.

Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5-1.0) than mice (N2BA:N2B ratio ~0.2). To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL) to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1-400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL "overshoot" at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.

Kellermayer, D., Smith, J. E., & Granzier, H. (2017). Novex-3, the tiny titin of muscle. Biophysical reviews, 9(3), 201-206.

The giant multi-functional striated muscle protein titin is the third most abundant muscle protein after myosin and actin. Titin plays a pivotal role in myocardial passive stiffness, structural integrity and stress-initiated signaling pathways. The complete sequence of the human titin gene contains three isoform-specific mutually exclusive exons [termed novel exons (novex)] coding for the I-band sequence, named novex-1 (exon 45), novex-2 (exon 46) and novex-3 (exon 48). Transcripts containing either the novex-1 or novex-2 exons code for the novex-1 and novex-2 titin isoforms. The novex-3 transcript contains a stop codon and polyA tail signal, resulting in an unusually small (∼700 kDa) isoform, referred to as novex-3 titin. This 'tiny titin' isoform extends from the Z-disc (N-terminus) to novex-3 (C-terminus) and is expressed in all striated muscles. Biochemical analysis of novex-3 titin in cardiomyocytes shows that obscurin, a vertebrate muscle protein, binds to novex-3 titin. The novex-3/obscurin complex localizes to the Z-disc region and may regulate calcium, and SH3- and GTPase-associated myofibrillar signaling pathways. Therefore, novex-3 titin could be involved in stress-initiated sarcomeric restructuring.

Granzier, H., Ottenheijm, C. A., & Granzier, H. L. (2010). Lifting the nebula: novel insights into skeletal muscle contractility. Physiology (Bethesda, Md.), 25(5).

Nebulin is a giant protein and a constituent of the skeletal muscle sarcomere. The name of this protein refers to its unknown (i.e., nebulous) function. However, recent rapid advances reveal that nebulin plays important roles in the regulation of muscle contraction. When these functions of nebulin are compromised, muscle weakness ensues, as is the case in patients with nemaline myopathy.

Bull, M., Methawasin, M., Strom, J., Nair, P., Hutchinson, K., & Granzier, H. (2016). Alternative Splicing of Titin Restores Diastolic Function in an HFpEF-Like Genetic Murine Model (TtnΔIAjxn). Circulation research, 119(6), 764-72.

Patients with heart failure with preserved ejection fraction (HFpEF) experience elevated filling pressures and reduced ventricular compliance. The splicing factor RNA-binding motif 20 (RBM20) regulates the contour length of titin's spring region and thereby determines the passive stiffness of cardiomyocytes. Inhibition of RBM20 leads to super compliant titin isoforms (N2BAsc) that reduce passive stiffness.