Jennifer Kehlet Barton

Jennifer Kehlet Barton

Director, BIO5 Institute
Thomas R. Brown Distinguished Chair in Biomedical Engineering
Professor, Agricultural-Biosystems Engineering
Professor, Biomedical Engineering
Professor, Electrical and Computer Engineering
Professor, Medical Imaging
Professor, Optical Sciences
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-0314

Work Summary

I develop new optical imaging devices that can detect cancer at the earliest stage. Optics has the resolution and sensitivity to find these small, curable lesions, and we design the endoscope that provide access to organs inside the body. .

Research Interest

Jennifer Barton, Ph.D. is known for her development of miniature endoscopes that combine multiple optical imaging techniques, particularly optical coherence tomography and fluorescence spectroscopy. She evaluates the suitability of these endoscopic techniques for detecting early cancer development in patients and pre-clinical models. She has a particular interest in the early detection of ovarian cancer, the most deadly gynecological malignancy. Additionally, her research into light-tissue interaction and dynamic optical properties of blood laid the groundwork for a novel therapeutic laser to treat disorders of the skin’s blood vessels. She has published over 100 peer-reviewed journal papers in these research areas. She is currently Professor of Biomedical Engineering, Electrical and Computer Engineering, Optical Sciences, Agriculture-Biosystems Engineering, and Medical Imaging at the University of Arizona. She has served as department head of Biomedical Engineering, Associate Vice President for Research, and is currently Director of the BIO5 Institute, a collaborative research institute dedicated to solving complex biology-based problems affecting humanity. She is a fellow of SPIE – the International Optics Society, and a fellow of the American Institute for Medical and Biological Engineering. Keywords: bioimaging, biomedical optics, biomedical engineering, bioengineering, cancer, endoscopes

Publications

Barton, J., Bonnema, G. T., Cardinal, K. O., Williams, S. K., & Barton, J. K. (2008). An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets. Physics in medicine and biology, 53(12).

Recent research has suggested that endothelialization of vascular stents is crucial to reducing the risk of late stent thrombosis. With a resolution of approximately 10 microm, optical coherence tomography (OCT) may be an appropriate imaging modality for visualizing the vascular response to a stent and measuring the percentage of struts covered with an anti-thrombogenic cellular lining. We developed an image analysis program to locate covered and uncovered stent struts in OCT images of tissue-engineered blood vessels. The struts were found by exploiting the highly reflective and shadowing characteristics of the metallic stent material. Coverage was evaluated by comparing the luminal surface with the depth of the strut reflection. Strut coverage calculations were compared to manual assessment of OCT images and epi-fluorescence analysis of the stented grafts. Based on the manual assessment, the strut identification algorithm operated with a sensitivity of 93% and a specificity of 99%. The strut coverage algorithm was 81% sensitive and 96% specific. The present study indicates that the program can automatically determine percent cellular coverage from volumetric OCT datasets of blood vessel mimics. The program could potentially be extended to assessments of stent endothelialization in native stented arteries.

Luo, Y., Castro, J., Barton, J. K., Kostuk, R. K., & Barbastathis, G. (2010). Simulations and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems. OPTICS EXPRESS, 18(18), 19273-19285.
Yang, M., Winkler, A., Klein, J., & Barton, J. K. (2012). Using optical coherence tomography to characterize thick-glaze structure: Chinese Southern Song Guan glaze case study. Studies in Conservation, 57(2), 67-75.
Welge, W. A., DeMarco, A. T., Watson, J. M., Rice, P. S., Barton, J. K., & Kupinski, M. A. (2014). Objective assessment of multimodality optical coherence tomography and second-harmonic generation image quality of ex vivo mouse ovaries using human observers. DESIGN AND QUALITY FOR BIOMEDICAL TECHNOLOGIES VII, 8936.
Luo, Y., de, L. E., Castro, J., Lee, J., Barton, J. K., Kostuk, R. K., & Barbastathis, G. (2011). Phase-contrast volume holographic imaging system. OPTICS LETTERS, 36(7), 1290-1292.