Jennifer Kehlet Barton

Jennifer Kehlet Barton

Director, BIO5 Institute
Thomas R. Brown Distinguished Chair in Biomedical Engineering
Professor, Agricultural-Biosystems Engineering
Professor, Biomedical Engineering
Professor, Electrical and Computer Engineering
Professor, Medical Imaging
Professor, Optical Sciences
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-0314

Work Summary

I develop new optical imaging devices that can detect cancer at the earliest stage. Optics has the resolution and sensitivity to find these small, curable lesions, and we design the endoscope that provide access to organs inside the body. .

Research Interest

Jennifer Barton, Ph.D. is known for her development of miniature endoscopes that combine multiple optical imaging techniques, particularly optical coherence tomography and fluorescence spectroscopy. She evaluates the suitability of these endoscopic techniques for detecting early cancer development in patients and pre-clinical models. She has a particular interest in the early detection of ovarian cancer, the most deadly gynecological malignancy. Additionally, her research into light-tissue interaction and dynamic optical properties of blood laid the groundwork for a novel therapeutic laser to treat disorders of the skin’s blood vessels. She has published over 100 peer-reviewed journal papers in these research areas. She is currently Professor of Biomedical Engineering, Electrical and Computer Engineering, Optical Sciences, Agriculture-Biosystems Engineering, and Medical Imaging at the University of Arizona. She has served as department head of Biomedical Engineering, Associate Vice President for Research, and is currently Director of the BIO5 Institute, a collaborative research institute dedicated to solving complex biology-based problems affecting humanity. She is a fellow of SPIE – the International Optics Society, and a fellow of the American Institute for Medical and Biological Engineering. Keywords: bioimaging, biomedical optics, biomedical engineering, bioengineering, cancer, endoscopes

Publications

Welge, W. A., & Barton, J. K. (2016). Optical coherence tomography imaging of colonic crypts in a mouse model of colorectal cancer. ENDOSCOPIC MICROSCOPY XI; AND OPTICAL TECHNIQUES IN PULMONARY MEDICINE III, 9691.
Alberding, J. P., Baldwin, A. L., Barton, J. K., & Wiley, E. (2005). Effects of pulsation frequency and endothelial integrity on enhanced arterial transmural filtration produced by pulsatile pressure. American journal of physiology. Heart and circulatory physiology, 289(2), H931-7.

The role of the endothelium in regulating transmural fluid filtration into the artery wall under pulsatile pressure and the effects of changes in pulsatile frequency on filtration have received little attention. Previous experiments (Alberding JP, Baldwin AL, Barton JK, and Wiley E. Am J Physiol Heart Circ Physiol 286: H1827-H1835, 2004) demonstrated significantly increased filtration after initial onset of pulsatile pressure compared with that predicted by using parameters measured under steady pressure. To determine the role of the endothelium in this phenomenon, the following experiments were performed on five New Zealand White rabbits (anesthetized with 30 mg/kg pentobarbital sodium). One of each pair of carotid arteries was deendothelialized, and filtration measurements under steady and pulsatile pressure were compared with those made in intact vessels (Alberding JP, Baldwin AL, Barton JK, and Wiley E. Am J Physiol Heart Circ Physiol 286: H1827-H1835, 2004). To determine the effect of increasing pulsatile frequency on arterial filtration, transmural filtration was measured by using pulsatile pressure frequencies of 1 Hz, followed by 2 Hz, in another set of intact arteries (6 arteries and 3 animals). For deendothelialized vessels, the initial increase in filtration after onset of pulsatility was similar to that observed in intact vessels, but the subsequent reduction in filtration was less abrupt. When pulsatile frequency was increased from 1 to 2 Hz in intact arteries, an initial increase in filtration was observed, similar to that obtained after onset of pulsatile pressure subsequent to a steady pressure. The observed responses of arteries to pulsatile pressure, with and without endothelium, or undergoing a frequency change, suggest a dynamic role for the endothelium in regulating transvascular transport in vivo.

Carbary-Ganz, J. L., Barton, J. K., & Utzinger, U. (2014). Quantum dots targeted to vascular endothelial growth factor receptor 2 as a contrast agent for the detection of colorectal cancer. Journal of biomedical optics, 19(8), 086003.

We successfully labeled colorectal cancer in vivo using quantum dots targeted to vascular endothelial growth factor receptor 2 (VEGFR2). Quantum dots with emission centered at 655 nm were bioconjugated to anti-VEGFR2 antibodies through streptavidin/biotin linking. The resulting QD655-VEGFR2 contrast agent was applied in vivo to the colon of azoxymethane (AOM) treated mice via lavage and allowed to incubate. The colons were then excised, cut longitudinally, opened to expose the lumen, and imaged en face using a fluorescence stereoscope. The QD655-VEGFR2 contrast agent produced a significant increase in contrast between diseased and undiseased tissues, allowing for fluorescence-based visualization of the diseased areas of the colon. Specificity was assessed by observing insignificant contrast increase when labeling colons of AOM-treated mice with quantum dots bioconjugated to isotype control antibodies, and by labeling the colons of saline-treated control mice. This contrast agent has a great potential for in vivo imaging of the colon through endoscopy.

Barton, J., Tumlinson, A. R., Hofer, B., Winkler, A. M., Povazay, B., Drexler, W., & Barton, J. K. (2008). Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling. Applied optics, 47(5).

Depth dependent broadening of the axial point spread function due to dispersion in the imaged media, and algorithms for postprocess correction, have been previously described for both time domain and frequency domain optical coherence tomography. We show that homogeneous media dispersion artifacts disappear when frequency domain samples are acquired with uniform spacing in circular wavenumber, as opposed to uniform sampling in optical frequency. We further explicate the source of this point spread broadening and simulate its magnitude in aqueous media. We experimentally demonstrate media dispersion compensation in high dispersion glass by choosing sample frequencies at equal intervals of media index of refraction divided by vacuum wavelength, and we recover unbroadened reflections without an additional postprocessing step.

Luo, Y., Gelsinger-Austin, P. J., Watson, J. M., Barbastathis, G., Barton, J. K., & Kostuk, R. K. (2008). Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system. Optics letters, 33(18), 2098-100.

A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.