Joan E Curry

Joan E Curry

Associate Department Head, Environmental Science
Professor, Environmental Science
Member of the Graduate Faculty
Professor, BIO5 Institute
Contact
(520) 626-5081

Research Interest

Joan Curry, PhD, stands in the field of research related to interfacial chemistry, which is a focus within physical chemistry. Within interfacial chemistry, she focuses on chemistry of molecules at the interfaces where solids and liquids come together. The term solid here includes mineral and bacterial surfaces found in soils and sediments, metal and oxide machine surfaces and cell surfaces found in the human body. Molecules can be water and ions that bathe soil surfaces, organics that lubricate machine parts and large biomacromolecules, such as proteins and lipopolysaccharides, attached to cells that mediate cell adhesion. Her specific interests are: 1) determining the effect of confinement on liquids in general and lubricants in particular and 2) characterizing the adhesive properties of cell surface biomacromolecules. The primary goal of this work is to understand how biomacromolecules that cover cell surfaces influence the interaction and adhesion of cells with other cells and with solid surfaces. Cells can be either bacteria or human cells. It is important to understand bacterial adhesion because it is the first step in biofilm formation, which has numerous undesirable consequences ranging from heat exchanger fouling to medical implant infections. Currently, very little is known about how bacterial surface biomacromolecules mediate adhesion and therefore it is still not possible to control or manipulate the process. Human cell adhesion is also mediated by biomacromolecules, in particular proteins that bind to one another through specific lock and key mechanisms. The structure of many cell adhesion proteins is well known but their function is still poorly understood. In collaboration with Ronald Heimark (Surgery), Dr. Curry is working to understand how heavy metals such as cadmium affect the binding of cell adhesion proteins called cadherins. This work will help scientists understand better how heavy metals may lead to birth defects and in adults could accelerate cardiovascular disease. This work is experimental and involves direct force measurements between biomembrane covered mica surfaces with the Surface Forces Apparatus (SFA). With the SFA it is possible to measure the magnitude and distance dependence of molecular forces acting between two flat surfaces with angstrom and nanonewton resolution.

Publications

Curry, J. E., & Kim, S. (2014). Adhesion: Coated Surface, Effects of Humidity. Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition.
Curry, J. E., & Christenson, H. K. (1996). Adsorption, wetting, and capillary condensation of nonpolar fluids in mica slits. Langmuir, 12(23), 5729-5735.

Abstract:

The adsorption behavior of n-pentane and cyclohexane in mica slits at room temperature has been studied as a function of chemical potential and gap width with multiple-beam interferometry. The measured film thicknesses close to saturation for large slit widths (effectively isolated surfaces) range up to 7 nm with n-pentane (at a relative vapor pressure of 0.9996) and 3 nm with cyclohexane (at a relative vapor pressure of 0.995). The thickness of these adsorbed wetting films is slightly larger than that predicted by van der Waals theory. The difference may be accounted for by thermal fluctuations of the adsorbed liquid-vapor interface. At smaller slit widths a capillary condensation transition occurs as the slit fills up with liquid. The separation at which this occurs is in good agreement with a film-thickening mechanism due to van der Waals forces across the gap only for the thickest films (t ≥ 6 nm). For thinner films the capillary condensation transition occurs at larger than expected slit widths, and the deviations are large for t ≤ 3 nm. We speculate that these larger-than-expected condensation separations are related to a fluctuation-enhanced film thickness in this regime. The work demonstrates the utility of measurements in a system consisting of a single slit-pore, without the complications of polydispersity and connectivity of pore networks. The results show that vapor adsorption isotherms can be measured with multiple-beam interferometry, i.e., in the surface force apparatus.