Judith Bronstein

Judith Bronstein

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
University Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-3534

Research Interest

Judith L. Bronstein is University Distinguished Professor of Ecology and Evolutionary Biology, with a joint appointment in the Department of Entomology. Dr. Bronstein’s large, active lab focuses on the ecology and evolution of interspecific interactions, particularly on the poorly-understood, mutually beneficial ones (mutualisms). Using a combination of field observations, experiments, and theory, they are examining how population processes, abiotic conditions, and the community context determine net effects of interactions for the fitness of each participant species. Specific conceptual areas of interest include: (i) conflicts of interest between mutualists and their consequences for the maintenance of beneficial outcomes; (ii) the causes and consequences of "cheating" within mutualism; (iii) context-dependent outcomes in both mutualisms and antagonisms; and (iv) anthropogenic threats to mutualisms. In addition, she is Editor-in-Chief of The American Naturalist, a leading international journal in ecology and evolution. An award-winning instructor, Dr. Bronstein teaches at both the undergraduate and graduate levels; she has also run a large training grant administered by BIO5 that places life sciences graduate students in public school classrooms around Tucson. She serves in leadership positions in the College of Science (including chairing the College of Science Promotion and Tenure Committee for 2013), at the University, and at the Arizona-Sonora Desert Museum, where she is a member of the Board of Trustees and Chair of the Science and Conservation Council.

Publications

Morris, W. F., Bronstein, J. L., & Wilson, W. G. (2003). Three-way coexistence in obligate mutualist-exploiter interactions: The potential role of competition. American Naturalist, 161(6), 860-875.

PMID: 12858272;Abstract:

Many mutualisms host "exploiter" species that consume the benefits provided by one or both mutualists without reciprocating. Exploiters have been widely assumed to destabilize mutualisms, yet they are common. We develop models to explore conditions for local coexistence of obligate plant/pollinating seed parasite mutualisms and nonpollinating exploiters. As the larvae of both pollinators and (at a later time) exploiters consume seeds, we examine the importance of intraspecific and (asymmetric) interspecific competition among and between pollinators and exploiters for achieving three-way coexistence. With weak intra- and interspecific competition, exploiters can invade the stable mutualism and coexist with the mutualists (either stably or with oscillations), provided the exploiters' intrinsic birthrate (bE) slightly exceeds that of the pollinators. At higher bE, all three species go locally extinct. When facing strong interspecific competition, exploiters cannot invade and coexist with the mutualists if intraspecific competition in pollinators and exploiters is weak. However, strong intraspecific competition in pollinators and exploiters facilitates exploiter invasion and coexistence and greatly expands the range of bE over which stable coexistence occurs. Our results suggest that mutualist/exploiter coexistence may be more easily achieved than previously thought, thus highlighting the need for a better understanding of competition among and between mutualists and exploiters.

Bronstein, J. L. (2001). The exploitation of mutualisms. Ecology Letters, 4(3), 277-287.

Abstract:

Mutualisms (interspecific cooperative interactions) are ubiquitously exploited by organisms that obtain the benefits mutualists offer, while delivering no benefits in return. The natural history of these exploiters is well-described, but relatively little effort has yet been devoted to analysing their ecological or evolutionary significance for mutualism. Exploitation is not a unitary phenomenon, but a set of loosely related phenomena: exploiters may follow mixed strategies or pure strategies at either the species or individual level, may or may not be derived from mutualists, and may or may not inflict significant costs on mutualisms. The evolutionary implications of these different forms of exploitation, especially the threats they pose to the stability of mutualism, have as yet been minimally explored. Studies of this issue are usually framed in terms of a "temptation to defect" that generates a destabilizing conflict of interest between partners. I argue that this idea is in fact rather inappropriate for interpreting most observed forms of exploitation in mutualisms. I suggest several alternative and testable ideas for how mutualism can persist in the face of exploitation.

Bronstein, J. L. (2009). The evolution of facilitation and mutualism. Journal of Ecology, 97(6), 1160-1170.

Abstract:

1. While the relationship between facilitation and competition has been explored extensively in recent years, there is also a natural link between facilitation and mutualism, as both are interspecific interactions that confer benefits. Yet, the relationship between these two interactions has been minimally explored. 2. Here, I explore parallels and differences between mutualism and facilitation. Five focal areas organize current research on mutualism evolution: trait evolution; the continuum from specialization to generalization; the evolutionary origins and maintenance of the interaction; co-evolution of partners; and the prevalence and implications of cheating. These foci are also helpful for investigating how facilitation evolves, a much less explored issue. 3. Testable hypotheses regarding the evolution of facilitation include the following: selection should be stronger on traits of facilitated species than on traits of facilitators; facilitative interactions with mutualistic (++) and commensal (+0) outcomes should exhibit greater evolutionary stability than those with antagonistic (+-) outcomes; co-evolution should be possible in mutualistic and antagonistic facilitation only; when co-evolution occurs, it should produce a geographic mosaic of interaction outcomes; and antagonistic facilitation could lead to selection on facilitators to either escape or to tolerate the neighbours that benefit from them. 4.Synthesis. Three gaps in our knowledge currently impede progress on evolutionary questions surrounding facilitation. First, reciprocal effects are rarely investigated; facilitation might evolve like mutualism, commensalism or antagonism, depending on effects on the facilitator species. Secondly, the genetics of relevant traits are not yet well explored; the traits themselves are better known for facilitator species than for the facilitated, which are more likely to evolve in the context of the interaction. Finally, the fitness costs and benefits associated with facilitation have rarely been measured. Filling these gaps should permit rapid progress in understanding how facilitation arises, persists and evolves. © 2009 British Ecological Society.

Rafferty, N., CaraDonna, P., & Bronstein, J. (2015). Phenological shifts and the fate of mutualisms. Oikos, 124, 14-21.
Alarcón, R., Davidowitz, G., & Bronstein, J. L. (2008). Nectar usage in a southern Arizona hawkmoth community. Ecological Entomology, 33(4), 503-509.

Abstract:

1. Hawkmoths (Sphingidae) are important plant associates at two lifehistory stages: larvae are herbivorous, whereas adults are nectar feeders and often pollinators. The diversity and identities of plants used for nectar is poorly known, however. 2. This study takes a community-level approach to hawkmoth nectar plant usage in a semi-arid grassland habitat in southern Arizona, U.S.A. 3. Pollen carried on the proboscis was identified from over 700 individuals of 14 hawkmoth species attracted to lights over a 2-year period. 4. Two plant species dominated pollen loads, suggesting that hawkmoths use these species extensively as nectar sources: Datura wrightii (Solanaceae), a classic hawkmothpollinated plant, and Agave palmeri (Agavaceae), which is known to be used extensively by bats. Field surveys indicate that both species are relatively rare in the flowering community. Little or no pollen was present on the moths from the most common plant species in flower during the study. 5. The dominance of Agave in pollen loads suggests that this typically bat-pollinated species may be subsidising pollinator populations of the hawkmoth-pollinated flora. 6. Three groups of hawkmoths within this community are identified based on larval diets (reported in the literature) and adult diets (documented here): those that, at a given site, heavily exploit the same plant species at both life-history stages (Manduca sexta and M. quinquemaculata); those that have broad local associations at both life-history stages (Hyles lineata); and those that exhibit narrow but non-overlapping local associations at the two life-history stages (all other hawkmoths at this site). © 2008 The Royal Entomological Society.