Katrina M Miranda

Katrina M Miranda

Associate Professor, Chemistry and Biochemistry-Sci
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-3655

Work Summary

We seek to produce new drugs that harness molecules produced during the natural immune response in order to treat cancer and pain. Such compounds may also provide new treatments for heart failure and alcoholism.

Research Interest

Katrina Miranda, PhD, claims nitric oxide (NO), which is synthesized in the body via enzymatic oxidation of L-arginine, is critical to numerous physiological functions, but also can contribute to the severity of diseases such as cancer or pathophysiological conditions such as stroke. This diversity in the responses to NO biosynthesis is a reflection of the diverse chemistry of NO. For instance, NO can alter the function of enzymes by binding to metal centers. This type of interaction could result in outcomes as disparate as control of blood pressure or death of an invading bacterium. NO can also be readily converted to higher nitrogen oxides such as N2O3 or ONOOH, which have very different chemical and biological properties. The ultimate result will depend upon numerous factors, particularly the location and concentration of NO produced. Therefore, site-specific modulation of NO concentration offers intriguing therapeutic possibilities for an ever expanding list of diseases, including cancer, heart failure and stroke. As a whole, Dr. Miranda is interested in elucidating the fundamental molecular redox chemistry of NO and in developing compounds to deliver or scavenge NO and other nitrogen oxides. These projects are designed to answer questions of potential medical importance through a multi-disciplinary approach, including analytical, synthetic, inorganic and biochemical techniques.The project categories include five major disciplines. First, she will work on the development and utilization of analytical techniques for detection and measurement of NO and other nitrogen oxides as well as the resultant chemistry of these species. Second, she will synthesize potential donors or scavengers of NO and other nitrogen oxides. Third, it’s necessary to describe chemical characterization of these compounds (spectroscopic features, kinetics, mechanisms and profiles of nitrogen oxide release, etc.). Fourth, Dr. Miranda will try to describe the biological characterization of these compounds (assay of effects on biological compounds, mechanisms and pathways, in vitro determination of potential for therapeutic utility, etc.). Fifth, she will identify of potential targets, such as enzymes, for treatment of disease through exposure to nitrogen oxide donors. Keywords: cancer treatment, pain treatment

Publications

Espey, M., Miranda, K., Thomas, D., Xavier, S., Citrin, D., Vitek, M., Wink, D., Chiueh, C., Hong, J., & Leong, S. (2003). A chemical perspective on the interplay between NO, reactive oxygen species, and reactive nitrogen oxide species. NITRIC OXIDE: NOVEL ACTIONS, DELETERIOUS EFFECTS AND CLINICAL POTENTIAL, 962, 195-206.

Nitric oxide (nitrogen monoxide, NO) plays a veritable cornucopia of regulatory roles in normal physiology. In contrast, NO has also been implicated in the etiology and sequela of numerous neurodegenerative diseases that involve reactive oxygen species (ROS) and nitrogen oxide species (RNOS). In this setting, NO is often viewed solely as pathogenic; however, the chemistry of NO can also be a significant factor in lessening injury mediated by both ROS and RNOS. The relationship between NO and oxidation, nitrosation, and nitration reactions is summarized. The salient factors that determine whether NO promotes, abates, or interconnects these chemistries are emphasized. From this perspective of NO chemistry, the type, magnitude, location, and duration of either ROS or RNOS reactions may be predicted.

Roveda, A. C., Aguiar, H. d., Miranda, K. M., Tadini, C. C., & Franco, D. W. (2014). Light-triggered and cysteine-mediated nitric oxide release from a biodegradable starch-based film. JOURNAL OF MATERIALS CHEMISTRY B, 2(41), 7232-7242.

A new nitric oxide-releasing material produced with cassava starch is described. The ruthenium nitrosyl complex trans-[Ru(NH3)(4)(isn)NO](BF4)(3) (RuNOisn; isn = isonicotinamide) is able to release NO upon either photolysis or chemical reduction. Impregnating this complex under mild conditions into cassava starch (CS) films produced a NO-delivery platform (CSx-RuNOisn). Spectroscopic analysis of CSx-RuNOisn indicates that the coordination sphere of RuNOisn remains intact during film production. Exposure of CSx-RuNOisn to long wave UV-light (lambda(irr) = 355 nm) leads to NO release and formation of the paramagnetic photoproduct trans-[RuIII(NH3)(4)isn(H2O)](3+) in the CS film. Reaction of this aquaruthenium(III) complex with aqueous nitrite regenerates RuNOisn in the film. Delivery of NO upon photolysis of CSx-RuNOisn was verified by trapping with oxymyoglobin. Moreover, NO release upon chemical reduction was carried out using L-cysteine as a reductant. Cysteine-mediated NO delivery from CSx-RuNOisn persisted for more than 7 h, during which physiologically relevant NO concentrations were liberated. These results suggest that CSx-RuNOisn is a promising candidate for use in biological applications.

Miller, T. W., Cherney, M. M., Lee, A. J., Francolean, N. E., Farmer, P. J., King, S. B., Hobbs, A. J., Miranda, K. M., Burstyn, J. N., & Fukuto, J. M. (2009). The effects of nitroxyl (HNO) on soluble guanylate cyclase activity. Interactions at ferrous heme and cysteine thiols. Journal of Biological Chemistry, 284(33), 21788-21796.

PMID: 19531488;PMCID: PMC2755905;Abstract:

It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.

Espey, M. G., Thomas, D. D., Miranda, K. M., & Wink, D. A. (2002). Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11127-11132.

PMID: 12177414;PMCID: PMC123221;Abstract:

The impact of nitric oxide (NO) synthesis on different biological cascades can rapidly change dependent on the rate of NO formation and composition of the surrounding milieu. With this perspective, we used diaminonaphthalene (DAN) and diaminofluorescein (DAF) to examine the nitrosative chemistry derived from NO and superoxide (O2-) simultaneously generated at nanomolar to low micromolar per minute rates by spermine/NO decomposition and xanthine oxidase-catalyzed oxidation of hypoxanthine, respectively. Fluorescent triazole product formation from DAN and DAF increased as the ratio of O2- to NO approached equimolar, then decreased precipitously as O2- exceeded NO. This pattern was also evident in DAF-loaded MCF-7 carcinoma cells and when stimulated macrophages were used as the NO source. Cyclic voltammetry analysis and inhibition studies by using the N2O3 scavenger azide indicated that DAN- and DAF-triazole could be derived from both oxidative nitrosylation (e.g., DAF radical + NO) and nitrosation (NO+ addition). The latter mechanism predominated with higher rates of NO formation relative to O2-. The effects of oxymyoglobin, superoxide dismutase, and carbon dioxide were examined as potential modulators of reactant availability for the O2- + NO pathway in vivo. The findings suggest that the outcome of NO biosynthesis in a scavenger milieu can be focused by O2- toward formation of NO adducts on nucleophilic residues (e.g., amines, thiols, hydroxyl) through convergent mechanisms involving the intermediacy of nitrogen dioxide. These modifications may be favored in microenvironments where the rate of O2- production is temporally and spatially contemporaneous with nitric oxide synthase activity, but not in excess of NO generation.

Paolocci, N., Jackson, M. I., Lopez, B. E., Miranda, K., Tocchetti, C. G., Wink, D. A., Hobbs, A. J., & Fukuto, J. M. (2007). The pharmacology of nitroxyl (HNO) and its therapeutic potential: Not just the janus face of NO11This review is dedicated to the career of Prof. Herbert T. Nagasawa, a pioneer in the field of HNO chemistry, biochemistry and pharmacology.. Pharmacology and Therapeutics, 113(2), 442-458.

PMID: 17222913;PMCID: PMC3501193;Abstract:

Nitroxyl (HNO), the 1-electron reduced and protonated congener of nitric oxide (NO), has received recent attention as a potential pharmacological agent for the treatment of heart failure and as a preconditioning agent for the mitigation of ischemia-reperfusion injury. Interest in the pharmacology and biology of HNO has prompted examination, or in some instances reexamination, of many of its chemical properties. Such studies have provided insight into the chemical basis for the biological effects of HNO, although the biochemical mechanisms for many of these effects remain to be established. In this review, a brief description of the biologically relevant chemistry of HNO is given, followed by a more detailed discussion of the pharmacology and potential toxicology of HNO. © 2006 Elsevier Inc. All rights reserved.