Kristian Doyle

Kristian Doyle

Associate Professor, Immunobiology
Associate Professor, Neurology
Associate Professor, Neurosurgery
Associate Professor, Psychology
Associate Professor, Neuroscience - GIDP
Member of the Graduate Faculty
Research Scientist
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-7013

Work Summary

Approximately 795,000 Americans suffer a stroke each year, and 400,000 will experience long-term disability. The number of stroke survivors in the population is expected to double by 2025. Currently, treatments for stroke patients are limited to tissue plasminogen activator (TPA), but its use is limited to the first few hours after stroke. Therefore, the goal of our research is to develop new therapeutics that can promote repair and recovery in this rapidly growing population.

Research Interest

The Doyle lab investigates the role of the immune system in causing dementia after stroke. Up to 30% of stroke patients develop dementia in the months and years after their stroke and we are testing the hypothesis that in some patients this is due to a chronic inflammatory response that persists at the site of the stroke infarct. We suspect that in the weeks, months and possibly years after stroke, neurotoxic inflammatory mediators, including T cells, cytokines and antibodies, leak out of the stroke infarct and cause bystander damage to the surrounding tissue, which then both impairs recovery, and in some instances leads to cognitive decline. In support of this hypothesis we have data that demonstrates that inflammation persists for months at the site of the infarct after stroke, and that a single stroke can directly lead to the development of immune-mediated delayed cognitive deficits. We are currently in the process of targeting different components of the prolonged inflammatory response to stroke to determine if post stroke dementia can be treated by selectively ablating individual immune mediators such as B lymphocytes, T lymphocytes, and CCR2. Keywords: Neuroinflammation, stroke, dementia, Alzheimer's disease

Publications

Doyle, K. P., & Buckwalter, M. S. (2012). The double-edged sword of inflammation after stroke: what sharpens each edge?. Annals of neurology, 71(6), 729-31.
Doyle, K. P., Suchland, K. L., Ciesielski, T. M., Lessov, N. S., Grandy, D. K., Scanlan, T. S., & Stenzel-Poore, M. P. (2007). Novel thyroxine derivatives, thyronamine and 3-iodothyronamine, induce transient hypothermia and marked neuroprotection against stroke injury. Stroke; a journal of cerebral circulation, 38(9), 2569-76.

Mild hypothermia confers profound neuroprotection in ischemia. We recently discovered 2 natural derivatives of thyroxine, 3-iodothyronamine (T(1)AM) and thyronamine (T(0)AM), that when administered to rodents lower body temperature for several hours without induction of a compensatory homeostatic response. We tested whether T(1)AM- and T(0)AM-induced hypothermia protects against brain injury from experimental stroke.

Csiszar, A., Podlutsky, A., Podlutskaya, N., Sonntag, W. E., Merlin, S. Z., Philipp, E. E., Doyle, K., Davila, A., Recchia, F. A., Ballabh, P., Pinto, J. T., & Ungvari, Z. (2012). Testing the oxidative stress hypothesis of aging in primate fibroblasts: is there a correlation between species longevity and cellular ROS production?. The journals of gerontology. Series A, Biological sciences and medical sciences, 67(8), 841-52.

The present study was conducted to test predictions of the oxidative stress theory of aging assessing reactive oxygen species production and oxidative stress resistance in cultured fibroblasts from 13 primate species ranging in body size from 0.25 to 120 kg and in longevity from 20 to 90 years. We assessed both basal and stress-induced reactive oxygen species production in fibroblasts from five great apes (human, chimpanzee, bonobo, gorilla, and orangutan), four Old World monkeys (baboon, rhesus and crested black macaques, and patas monkey), three New World monkeys (common marmoset, red-bellied tamarin, and woolly monkey), and one lemur (ring-tailed lemur). Measurements of cellular MitoSox fluorescence, an indicator of mitochondrial superoxide (O2(·-)) generation, showed an inverse correlation between longevity and steady state or metabolic stress-induced mitochondrial O2(·-) production, but this correlation was lost when the effects of body mass were removed, and the data were analyzed using phylogenetically independent contrasts. Fibroblasts from longer-lived primate species also exhibited superior resistance to H(2)O(2)-induced apoptotic cell death than cells from shorter-living primates. After correction for body mass and lack of phylogenetic independence, this correlation, although still discernible, fell short of significance by regression analysis. Thus, increased longevity in this sample of primates is not causally associated with low cellular reactive oxygen species generation, but further studies are warranted to test the association between increased cellular resistance to oxidative stressor and primate longevity.

Branca, C., Ferreira, E., Nguyen, T. V., Doyle, K., Caccamo, A., & Oddo, S. (2017). Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer's disease. Human molecular genetics, 26(24), 4823-4835.

Aging is the major risk factor for several neurodegenerative diseases, including Alzheimer's disease (AD). However, the mechanisms by which aging contributes to neurodegeneration remain elusive. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor that regulates expression of a vast number of genes by binding to the antioxidant response element. Nrf2 levels decrease as a function of age, and reduced Nrf2 levels have been reported in postmortem human brains and animal models of AD. Nevertheless, it is still unknown whether Nrf2 plays a role in the cognitive deficits associated with AD. To address this question, we used a genetic approach to remove the Nrf2 gene from APP/PS1 mice, a widely used animal model of AD. We found that the lack of Nrf2 significantly exacerbates cognitive deficits in APP/PS1, without altering gross motor function. Specifically, we found an exacerbation of deficits in spatial learning and memory, as well as in working and associative memory. Different brain regions control these behavioral tests, indicating that the lack of Nrf2 has a global effect on brain function. The changes in cognition were linked to an increase in Aβ and interferon-gamma (IFNγ) levels, and microgliosis. The changes in IFNγ levels are noteworthy as previously published evidence indicates that IFNγ can increase microglia activation and induce Aβ production. Our data suggest a clear link between Nrf2 and AD-mediated cognitive decline and further strengthen the connection between Nrf2 and AD.

Danilo, C. A., Constantopoulos, E., McKee, L. A., Chen, H., Regan, J. A., Lipovka, Y., Lahtinen, S., Stenman, L. K., Nguyen, T. V., Doyle, K. P., Slepian, M. J., Khalpey, Z. I., & Konhilas, J. P. (2017). Bifidobacterium animalis subsp. lactis 420 mitigates the pathological impact of myocardial infarction in the mouse. Beneficial microbes, 8(2), 257-269.

There is a growing appreciation that our microbial environment in the gut plays a critical role in the maintenance of health and the pathogenesis of disease. Probiotic, beneficial gut microbes, administration can directly attenuate cardiac injury and post-myocardial infarction (MI) remodelling, yet the mechanisms of cardioprotection are unknown. We hypothesised that administration of Bifidobacterium animalis subsp. lactis 420 (B420), a probiotic with known anti-inflammatory properties, to mice will mitigate the pathological impact of MI, and that anti-inflammatory T regulatory (Treg) immune cells are necessary to impart protection against MI as a result of B420 administration. Wild-type male mice were administered B420, saline or Lactobacillus salivarius 33 (Ls-33) by gavage daily for 14 or 35 days, and underwent ischemia/reperfusion (I/R). Pretreatment with B420 for 10 or 28 days attenuated cardiac injury from I/R and reduced levels of inflammatory markers. Depletion of Treg cells by administration of anti-CD25 monoclonal antibodies eliminated B420-mediated cardio-protection. Further cytokine analysis revealed a shift from a pro-inflammatory to an anti-inflammatory environment in the probiotic treated post-MI hearts compared to controls. To summarise, B420 administration mitigates the pathological impact of MI. Next, we show that Treg immune cells are necessary to mediate B420-mediated protection against MI. Finally, we identify putative cellular, epigenetic and/or post-translational mechanisms of B420-mediated protection against MI.