Lalitha Madhavan

Lalitha Madhavan

Associate Professor, Neurology
Associate Professor, Medicine
Associate Professor, Neuroscience - GIDP
Associate Professor, Molecular and Cellular Biology
Associate Professor, Evelyn F Mcknight Brain Institute
Associate Professor, Clinical Translational Sciences
Associate Professor, Physiological Sciences - GIDP
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-2330

Research Interest

Dr. Madhavan M.D., PhD, is an Assistant Professor of Neurology at the University of Arizona. She is also a member of the Arizona Cancer Center and the Evelyn F. McKnight Brain Institute, and is affiliated with the Neuroscience, Physiology and Molecular, Cellular Biology graduate programs at UA. Dr. Madhavan’s research centers on stem cells and neurological diseases. The ultimate goal of the work is to devise brain repair strategies for neural disorder using stem cells, and other alternate approaches. Currently, her lab is focused on Parkinson’s Disease, and is engaged in three main endeavors: (1) Understanding the therapeutic potential of stem cells in the context of aging, (2) Creating patient-specific induced pluripotent stem cells to study the etiology of Parkinson’s Disease, and (3) Testing the therapeutic feasibility of various types of adult stem cells in preclinical Parkinson’s Disease models. These projects are united by a common goal, which is to investigate core problems hindering the development of effective stem cell-based therapies for Parkinson’s Disease. In addition, the work represents a novel path of research for not only Parkinson’s Disease therapy, but has broad implications for developing treatments for several other age-related neurodegenerative disorders. Visit the Madhavan Lab website to learn more.

Publications

Madhavan, L., Daley, B. F., Davidson, B. L., Boudreau, R. L., Lipton, J. W., Cole-Strauss, A., Steece-Collier, K., & Collier, T. J. (2015). Sonic Hedgehog Controls the Phenotypic Fate and Therapeutic Efficacy of Grafted Neural Precursor Cells in a Model of Nigrostriatal Neurodegeneration. PloS one, 10(9), e0137136.

The expression of soluble growth and survival promoting factors by neural precursor cells (NPCs) is suggested to be a prominent mechanism underlying the protective and regenerative effects of these cells after transplantation. Nevertheless, how and to what extent specific NPC-expressed factors contribute to therapeutic effects is not well understood. Using RNA silencing, the current study investigated the roles of two donor NPC molecules, namely glial cell-line derived neurotrophic factor (GDNF) and sonic hedgehog (SHH), in the protection of substantia nigra dopamine neurons in rats treated with 6-hydroxydopamine (6-OHDA). Analyses indicate that as opposed to the knock-down of GDNF, SHH inhibition caused a profound decline in nigrostriatal neuroprotection. Further, SHH silencing also curbed endogenous neurogenesis and the migration of host brdU+/dcx+ neural precursors into the striatum, which was present in the animals receiving control or GDNF silenced NPCs. A change in graft phenotype, mainly reflected by a reduced proportion of undifferentiated nestin+ cells, as well as a significantly greater host microglial activity, suggested an important role for these processes in the attenuation of neuroprotection and neurogenesis upon SHH silencing. Overall these studies reveal core mechanisms fundamental to grafted NPC-based therapeutic effects, and delineate the particular contributions of two graft-expressed molecules, SHH and GDNF, in mediating midbrain dopamine neuron protection, and host plasticity after NPC transplantation.