Laurence Hurley

Laurence Hurley

Associate Director, BIO5 Institute
Professor, Medicinal Chemistry-Pharmaceutical Sciences
Professor, Medicinal Chemistry-Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-5622

Work Summary

Laurence Hurley's long-time research interest is in molecular targeting of DNA, first by covalent binders (CC-1065 and psorospermin), then as compounds that target protein–DNA complexes (pluramycins and Et 743), and most recently as four-stranded DNA structures (G-quadruplexes and i-motifs). He was the first to show that targeting G-quadruplexes could inhibit telomerase (Sun et al. [1997] J. Med. Chem., 40, 2113) and that targeting G-quadruplexes in promoter complexes results in inhibition of transcription (Siddiqui-Jain et al. [2002] Proc. Natl. Acad. Sci. U.S.A., 99, 11593).

Research Interest

Laurence Hurley, PhD, embraces an overall objective to design and develop novel antitumor agents that will extend the productive lives of patients who have cancer. His research program in medicinal chemistry depends upon a structure-based approach to drug design that is intertwined with a clinical oncology program in cancer therapeutics directed by Professor Daniel Von Hoff at TGen at the Mayo Clinic in Scottsdale. Dr. Hurley directs a research group that consists of a team of graduate and postdoctoral students with expertise in structural and synthetic chemistry working alongside students in biochemistry and molecular biology. NMR and in vivo evaluations of novel agents are carried out in collaboration with other research groups in the Arizona Cancer Center. At present, they have a number of different groups of compounds that target a variety of intracellular receptors. These receptors include: (1) transcriptional regulatory elements, (2) those involved in cell signaling pathways, and (3) protein-DNA complexes, including transcriptional factor-DNA complexes.In close collaboration with Dr. Gary Flynn in Medicinal Chemistry, he has an ongoing program to target a number of important kinases, including aurora kinases A and B, p38, and B-raf. These studies involve structure-based approaches as well as virtual screening. Molecular modeling and synthetic medicinal chemistry are important tools.The protein–DNA complexes involved in transcriptional activation of promoter complexes using secondary DNA structures are also targets for drug design.

Publications

Reynolds, V. L., McGovren, J. P., & Hurley, L. H. (1986). The chemistry, mechanism of action and biological properties of CC-1065, a potent antitumor antibiotic. Journal of Antibiotics, 39(3), 319-334.
Hurley, L. H., Gairola, C., & Zmijewski Jr., M. J. (1975). Biosynthesis of the antiviral antibiotic 11-demethyltomaymycin by Streptomyces achromogenes. Journal of the Chemical Society, Chemical Communications, 120-121.

Abstract:

The building blocks for 11-demethyltomay-mycin have been established as trytophan, tyrosine and a one carbon unit via methionine.

Dai, J., Hatzakis, E., Hurley, L. H., & Yang, D. (2010). I-motif structures formed in the human c-MYC promoter are highly dynamic--insights into sequence redundancy and I-motif stability. PloS one, 5(7), e11647.

The GC-rich nuclease hypersensitivity element III1 (NHE III1) of the c-MYC promoter largely controls the transcriptional activity of the c-MYC oncogene. The C-rich strand in this region can form I-motif DNA secondary structures. We determined the folding pattern of the major I-motif formed in the NHE III1, which can be formed at near-neutral pH. While we find that the I-motif formed in the four 3' consecutive runs of cytosines appears to be the most favored, our results demonstrate that the C-rich strand of the c-MYC NHE III1 exhibits a high degree of dynamic equilibration. Using a trisubstituted oligomer of this region, we determined the formation of two equilibrating loop isomers, one of which contains a flipped-out cytosine. Our results indicate that the intercalative cytosine+-cytosine base pairs are not always necessary for an intramolecular I-motif. The dynamic character of the c-MYC I-motif is intrinsic to the NHE III1 sequence and appears to provide stability to the c-MYC I-motif.

Hornemann, U., Hurley, L. H., Speedie, M. K., & Floss, H. G. (1971). The biosynthesis of indolmycin. Journal of the American Chemical Society, 93(12), 3028-3035.

PMID: 5095271;Abstract:

Indolmycin, an antibiotic produced by a strain of Streptomyces griseus, is formed from (S)-tryptophan, which loses from its side chain the amino nitrogen atom, the hydrogen atom from C-2, and one of the hydrogen atoms from C-3, two intact methyl groups of (S)-methionine, and the guanido carbon atom of (S)-arginine. (R)-β-Methylindolepyruvate and (2S,3R)-indolmycenic acid are intermediates in the biosynthesis. The absolute configuration of indolmycin has been determined by chemical correlation with (-)-(R)-indoleisopropionic acid. Studies with cell-free extracts of S. griseus revealed the presence of a transaminase which converts (S)-tryptophan into indolepyruvate and a methyltransferase which C-methylates indolepyruvate.

Shaw, A. Y., Henderson, M. C., Flynn, G., Samulitis, B., Han, H., Stratton, S. P., Chow, H. S., Hurley, L. H., & Dorr, R. T. (2009). Characterization of novel diaryl oxazole-based compounds as potential agents to treat pancreatic cancer. Journal of Pharmacology and Experimental Therapeutics, 331(2), 636-647.

PMID: 19657049;PMCID: PMC2775253;Abstract:

A series of diaryl- and fluorenone-based analogs of the lead compound UA-62784 [4-(5-(4-methoxyphenyl)oxazol-2-yl)-9H-fluoren-9-one] was synthesized with the intention of improving upon the selective cytotoxicity of UA-62784 against human pancreatic cancer cell lines with a deletion of the tumor suppressor gene deleted in pancreas cancer locus 4 (DPC-4, SMAD-4). Over 80 analogs were synthesized and tested for antitumor activity against pancreatic cancer (PC) cell lines (the PC series). Despite a structural relationship to UA-62784, which inhibits the mitotic kinesin centromere protein E (CENP-E), none of the analogs was selective for DPC-4-deleted pancreatic cancer cell lines. Furthermore, none of the analogs was a potent or selective inhibitor of four different mitotic kinesins (mitotic kinesin-5, CENP-E, mitotic kinesin-like protein-1, and mitotic centromere-associated kinesin). Therefore, other potential mechanisms of action were evaluated. A diaryl oxazole lead analog from this series, PC-046 [5-(4-methoxyphenyl)-2-(3-(3-methoxyphenyl)pyridin-4-yl) oxazole], was shown to potently inhibit several protein kinases that are overexpressed in human pancreatic cancers, including tyrosine receptor kinase B, interleukin-1 receptor-associated kinase-4, and proto-oncogene Pim-1. Cells exposed to PC-046 exhibit a cell cycle block in the S-phase followed by apoptotic death and necrosis. PC-046 effectively reduced MiaPaca-2 tumor growth in severe combined immunodeficiency mice by 80% compared with untreated controls. The plasma half-life was 7.5 h, and cytotoxic drug concentrations of >3 μM were achieved in vivo in mice. The diaryl oxazole series of compounds represent a new chemical class of anticancer agents that inhibit several types of cancer-relevant protein kinases. Copyright © 2009 by The American Society for Pharmacology and Experimental Therapeutics.