Lingling An

Lingling An

Associate Professor, Agricultural-Biosystems Engineering
Associate Professor, Public Health
Associate Professor, Statistics-GIDP
Associate Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-1248

Research Interest

Lingling An, PhD, conducts research in the interdisciplinary boundaries of many fields such as statistical sciences, biological and medical sciences, genomics and genetics. Her statistical group's major research interests include development and application of statistical and computational methods for analysis of high-dimensional genomic/genetic, metagenomic/ metatranscriptomic, and epigenomic data. The overlying vision is to develop rigorous, timely and useful statistical and computational methodologies to help biologists/geneticists to ask, answer, and disseminate biologically interesting information in the quest to understand the ultimate function of DNA and gene network.

Publications

An, L. (2017). A Novel Approach on Differential Abundance Analysis for Matched Metagenomic Samples. Cancer Informatics.
Zhao, J., Wang, J., Lingling, A. n., Doerge, R. W., Chen, Z. J., Grau, C. R., Meng, J., & Osborn, T. C. (2007). Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta, 227(1), 13-24.

PMID: 17665211;Abstract:

Sclerotinia sclerotiorum is a necrotrophic plant pathogen which causes serious disease in agronomically important crop species. The molecular basis of plant defense to this pathogen is poorly understood. We investigated gene expression changes associated with S. sclerotiorum infection in a partially resistant and a susceptible genotype of oilseed Brassica napus using a whole genome microarray from Arabidopsis. A total of 686 and 1,547 genes were found to be differentially expressed after infection in the resistant and susceptible genotypes, respectively. The number of differentially expressed genes increased over infection time with the majority being up-regulated in both genotypes. The putative functions of the differentially expressed genes included pathogenesis-related (PR) proteins, proteins involved in the oxidative burst, protein kinase, molecule transporters, cell maintenance and development, abiotic stress, as well as proteins with unknown functions. The gene regulation patterns indicated that a large part of the defense response exhibited as a temporal and quantitative difference between the two genotypes. Genes associated with jasmonic acid (JA) and ethylene signal transduction pathways were induced, but no salicylic acid (SA) responsive genes were identified. Candidate defense genes were identified by integration of the early response genes in the partially resistant line with previously mapped quantitative trait loci (QTL). Expression levels of these genes were verified by Northern blot analyses. These results indicate that genes encoding various proteins involved in diverse roles, particularly WRKY transcription factors and plant cell wall related proteins may play an important role in the defense response to S. sclerotiorum disease. © 2007 Springer-Verlag.