Meredith Hay

Meredith Hay

Professor, Physiology
Professor, Evelyn F Mcknight Brain Institute
Professor, Psychology
Professor, Physiological Sciences - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-7384

Work Summary

Our lab is focused on the development of novel peptides to inhibit this inflammatory cascade and improve brain blood flow. These peptides are designed to significantly improve serum half-life and penetrate the blood-brain-barrier. These peptides act to inhibit the inflammatory pathways at both the level of brain blood vessels and the brain itself.

Research Interest

Dr. Hay is internationally known for her work in cardiovascular neurobiology and her current studies on the role of sex and sex hormones in the development of hypertension. She has been continuously funded by the NIH and other sources for the past 26 years. She has extensive experience in central renin angiotensin mechanisms, neurophysiology and reactive oxygen and cytosolic calcium neuroimaging and in advancing knowledge related to central mechanisms of neurohumoral control of the circulation. She is a Professor of Physiology at the University of Arizona College of Medicine and maintains active participation in the American Physiological Society, the Society of Neuroscience, AAAS, and has served on numerous editorial boards of prestigious scientific journals and grant review panels for the National Institutes of Health and the National American Heart Association. The primary focus of Dr. Hay’s laboratory is the understanding of the biophysical and cellular mechanisms underlying neurotransmitter modulation of sympathetic outflow and ultimately arterial blood pressure. The scientific questions being asked are: 1) What central neurotransmitter mechanisms are involved in the normal regulation of cardiovascular function? 2) Does the development of some forms of hypertension involve biophysical or molecular alteration in the neurotransmitter mechanisms regulating cardiovascular control? 3) Can these central signal transduction systems, which control sympathetic outflow and ultimately arterial blood pressure, be altered in order to prevent or attenuate the development of some forms of hypertension? 4) Are there gender related differences in some of these mechanisms?Dr. Hay has extensive national experience in university-wide administration and interdisciplinary research program development. Prior to coming to the University of Arizona in 2008 as Executive Vice President and Provost, Dr. Hay was the Vice President for Research for the University of Iowa, where she worked with state and federal lawmakers, private sector representatives, and local community groups to broaden both private and public support for research universities. Dr. Hay, a Texas native, earned her B.A. in psychology from the University of Colorado, Denver, her M.S. in neurobiology from the University of Texas at San Antonio, and her Ph.D. in cardiovascular pharmacology from the University of Texas Health Sciences Center, San Antonio. She trained as a postdoctoral fellow in the Cardiovascular Center at the University of Iowa College of Medicine and in the Department of Molecular Physiology and Biophysics at Baylor College of Medicine in Houston. She was a tenured faculty member of the University of Missouri-Columbia from 1996-2005. Prior to Missouri, she was a faculty member in the Department of Physiology at the University of Texas Health Science Center- San Antonio.

Publications

Hay, M., McKenzie, H., Lindsley, K., Dietz, N., Bradley, S. R., Conn, P. J., & Hasser, E. M. (1999). Heterogeneity of metabotropic glutamate receptors in autonomic cell groups of the medulla oblongata of the rat. The Journal of comparative neurology, 403(4), 486-501.

Metabotropic glutamate receptors (mGluRs) in the medulla oblongata have been suggested to be involved in the regulation of autonomic function. The aim of the present study was to examine the localization and expression of four types of mGluRs: mGluRla, mGluR2/3, mGluR5, and mGluR7 in the dorsal and ventral autonomic nuclei of the medulla of the rat. The four mGluR subtypes studied were differentially distributed in distinct subnuclei in the nucleus of the solitary tract (NTS). mGluRla immunoreactivity was identified in cell bodies, dendrites, and axonal processes in the intermediate, dorsal lateral, and interstitial subnuclei of the NTS. No mGluRla immunoreactivity was observed in the commissural or medial NTS subnuclei. Immunoreactivity for mGluR2/3 and mGluR5 as observed in fibers and putative axonal processes in the interstitial, intermediate, and dorsolateral subnuclei of the NTS. In contrast, mGluR7 was expressed primarily in fibers and terminals in the central and commissural NTS subnuclei. Expression of mGluR2/3 was clearly evident in cell bodies, dendrites, and axonal processes within the area postrema. The vagal outflow nuclei were also studied. The dorsal motor nucleus of the vagus (DMN) contained mGluRla cell bodies, dendrites, and axonal fibers and light mGluR2/3 processes. Throughout the rostral-caudal extent of the compact and semicompact formation nucleus ambiguus, mGluRla was found in cell bodies and fibers. Within the caudal and rostral regions of the ventral lateral medulla, mGluRla was observed in cell bodies and fibers. Cell bodies containing mGluRla were found adjacent to cells staining positive for tyrosine hydroxylase (TH) in these regions but were not colocalized with the TH staining. However, mGluRla-expressing neurons in the ventral lateral medulla did appear to receive innervation from TH-containing fibers. These results suggest that the mGluRla-expressing neurons within the ventral lateral medulla are predominantly not catecholaminergic but may be innervated by catecholamine-containing fibers. These data are the first to provide a mapping of the different mGluR subtypes within the medulla and may facilitate predictions regarding the function of L-glutamate neurotransmission in these regions.

Xue, B., Johnson, A. K., & Hay, M. (2013). Sex differences in angiotensin II- and aldosterone-induced hypertension: the central protective effects of estrogen. American journal of physiology. Regulatory, integrative and comparative physiology, 305(5), R459-63.

Premenopausal women have lower blood pressure and a reduced incidence of cardiovascular disease compared with age-matched men. Similar sex differences have been seen across species and in multiple animal models of hypertension. While important progress over the last decade has been made in elucidating some of the mechanisms underlying these differences, there are still significant gaps in our knowledge. Understanding the cellular and molecular mechanisms responsible for sex differences in hypertension will be important for developing sex-specific therapies targeted toward the prevention and treatment of hypertension. Female sex hormones, especially estrogen, have been demonstrated to modulate the renin-angiotensin-aldosterone system (RAAS) and to have beneficial effects on cardiovascular function through actions not only on the kidney, heart, and vasculature, but also on the central nervous system (CNS). This review primarily focuses on the central regulatory actions of estrogen on brain nuclei involved in blood pressure regulation and the interactions between estrogen and the RAAS in the CNS by which estrogen plays an important protective role against the development of hypertension.

Foley, C. M., Vogl, H. W., Mueller, P. J., Hay, M., & Hasser, E. M. (1999). Cardiovascular response to group I metabotropic glutamate receptor activation in NTS. The American journal of physiology, 276(5 Pt 2), R1469-78.

Glutamate is the proposed neurotransmitter of baroreceptor afferents at the level of the nucleus tractus solitarius (NTS). Exogenous glutamate in the NTS activates neurons through ionotropic and metabotropic glutamate receptors (mGluRs). This study tested the hypothesis that group I mGluRs in the NTS produce depressor, bradycardic, and sympathoinhibitory responses. In urethan-anesthetized rats, unilateral 30-nl microinjections of the group I-selective mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) into the NTS decreased mean arterial pressure, heart rate, and lumbar sympathetic nerve activity. The dose of drug that produced 50% of the maximal response (ED50) was 50-100 microM. The response to microinjection of equal concentrations of DHPG or the general mGluR agonist 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD) produced similar cardiovascular effects. The cardiovascular response to injection of DHPG or ACPD was abolished by NTS blockade of mGluRs with alpha-methyl-4-carboxyphenylglycine (MCPG). Blockade of ionotropic glutamate receptors with kynurenic acid did not attenuate the response to DHPG or ACPD injection. These data suggest that DHPG and ACPD activate mGluRs in the NTS and do not require ionotropic glutamate receptors to produce their cardiovascular response. In the NTS the group I mGluRs produce responses that are consistent with excitation of neurons involved in reducing sympathetic outflow, heart rate, and arterial pressure.

Xue, B., Johnson, A. K., & Hay, M. (2007). Sex differences in angiotensin II- induced hypertension. Brazilian journal of medical and biological research = Revista brasileira de pesquisas médicas e biológicas / Sociedade Brasileira de Biofísica ... [et al.], 40(5), 727-34.

Sex differences in the development of hypertension and cardiovascular disease have been described in humans and in animal models. In this paper we will review some of our studies which have as their emphasis the examination of the role of sex differences and sex steroids in modulating the central actions of angiotensin II (ANG II) via interactions with free radicals and nitric oxide, generating pathways within brain circumventricular organs and in central sympathomodulatory systems. Our studies indicate that low-dose infusions of ANG II result in hypertension in wild-type male mice but not in intact wild-type females. Furthermore, we have demonstrated that ANG II-induced hypertension in males is blocked by central infusions of the androgen receptor antagonist, flutamide, and by central infusions of the superoxide dismutase mimetic, tempol. We have also found that, in comparison to females, males show greater levels of intracellular reactive oxygen species in circumventricular organ neurons following long-term ANG II infusions. In female mice, ovariectomy, central blockade of estrogen receptors or total knockout of estrogen a receptors augments the pressor effects of ANG II. Finally, in females but not in males, central blockade of nitric oxide synthase increases the pressor effects of ANG II. Taken together, these results suggest that sex differences and estrogen and testosterone play important roles in the development of ANG II-induced hypertension.

Ji, H., Zheng, W., Li, X., Liu, J., Wu, X., Zhang, M. A., Umans, J. G., Hay, M., Speth, R. C., Dunn, S. E., & Sandberg, K. (2014). Sex-specific T-cell regulation of angiotensin II-dependent hypertension. Hypertension, 64(3), 573-82.

Studies suggest T cells modulate arterial pressure. Because robust sex differences exist in the immune system and in hypertension, we investigated sex differences in T-cell modulation of angiotensin II-induced increases in mean arterial pressure in male (M) and female (F) wild-type and recombination-activating-gene-1-deficient (Rag1(-/-)) mice. Sex differences in peak mean arterial pressure in wild-type were lost in Rag1(-/-) mice (mm Hg: wild-type-F, 136±4.9 versus wild-type-M, 153±1.7; P0.02; Rag1(-/-)-F, 135±2.1 versus Rag1(-/-)-M, 141±3.8). Peak mean arterial pressure was 13 mm Hg higher after adoptive transfer of male (CD3(M)→Rag1(-/-)-M) versus female (CD3(F)→Rag1(-/-)-M) T cells. CD3(M)→Rag1(-/-)-M mice exhibited higher splenic frequencies of proinflammatory interleukin-17A (2.4-fold) and tumor necrosis factor-α (2.2-fold)-producing T cells and lower plasma levels (13-fold) and renal mRNA expression (2.4-fold) of interleukin-10, whereas CD3(F)→Rag1(-/-)-M mice displayed a higher activation state in general and T-helper-1-biased renal inflammation. Greater T-cell infiltration into perivascular adipose tissue and kidney associated with increased pressor responses to angiotensin II if the T cell donor was male but not female and these sex differences in T-cell subset expansion and tissue infiltration were maintained for 7 to 8 weeks within the male host. Thus, the adaptive immune response and role of pro- and anti-inflammatory cytokine signaling in hypertension are distinct between the sexes and need to be understood to improve therapeutics for hypertension-associated disease in both men and women.