Meredith Hay

Meredith Hay

Professor, Physiology
Professor, Evelyn F Mcknight Brain Institute
Professor, Psychology
Professor, Physiological Sciences - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-7384

Work Summary

Our lab is focused on the development of novel peptides to inhibit this inflammatory cascade and improve brain blood flow. These peptides are designed to significantly improve serum half-life and penetrate the blood-brain-barrier. These peptides act to inhibit the inflammatory pathways at both the level of brain blood vessels and the brain itself.

Research Interest

Dr. Hay is internationally known for her work in cardiovascular neurobiology and her current studies on the role of sex and sex hormones in the development of hypertension. She has been continuously funded by the NIH and other sources for the past 26 years. She has extensive experience in central renin angiotensin mechanisms, neurophysiology and reactive oxygen and cytosolic calcium neuroimaging and in advancing knowledge related to central mechanisms of neurohumoral control of the circulation. She is a Professor of Physiology at the University of Arizona College of Medicine and maintains active participation in the American Physiological Society, the Society of Neuroscience, AAAS, and has served on numerous editorial boards of prestigious scientific journals and grant review panels for the National Institutes of Health and the National American Heart Association. The primary focus of Dr. Hay’s laboratory is the understanding of the biophysical and cellular mechanisms underlying neurotransmitter modulation of sympathetic outflow and ultimately arterial blood pressure. The scientific questions being asked are: 1) What central neurotransmitter mechanisms are involved in the normal regulation of cardiovascular function? 2) Does the development of some forms of hypertension involve biophysical or molecular alteration in the neurotransmitter mechanisms regulating cardiovascular control? 3) Can these central signal transduction systems, which control sympathetic outflow and ultimately arterial blood pressure, be altered in order to prevent or attenuate the development of some forms of hypertension? 4) Are there gender related differences in some of these mechanisms?Dr. Hay has extensive national experience in university-wide administration and interdisciplinary research program development. Prior to coming to the University of Arizona in 2008 as Executive Vice President and Provost, Dr. Hay was the Vice President for Research for the University of Iowa, where she worked with state and federal lawmakers, private sector representatives, and local community groups to broaden both private and public support for research universities. Dr. Hay, a Texas native, earned her B.A. in psychology from the University of Colorado, Denver, her M.S. in neurobiology from the University of Texas at San Antonio, and her Ph.D. in cardiovascular pharmacology from the University of Texas Health Sciences Center, San Antonio. She trained as a postdoctoral fellow in the Cardiovascular Center at the University of Iowa College of Medicine and in the Department of Molecular Physiology and Biophysics at Baylor College of Medicine in Houston. She was a tenured faculty member of the University of Missouri-Columbia from 1996-2005. Prior to Missouri, she was a faculty member in the Department of Physiology at the University of Texas Health Science Center- San Antonio.

Publications

Xue, B., & Hay, M. (2003). 17beta-estradiol inhibits excitatory amino acid-induced activity of neurons of the nucleus tractus solitarius. Brain research, 976(1), 41-52.

The effects of 17beta-estradiol (17betaE2) on spontaneous and excitatory amino acid (EAA) induced nucleus tractus solitarius (NTS) neuronal activity were investigated by electrophysiological and immunohistochemical experiments in ovariectomized female Sprague-Dawley rats. Out of 62 NTS neurons tested, 42 were inhibited (68%) following iontophoretic application of 17betaE2 in a current-dependent manner. The averaged firing rate decreased from 3.06+/-0.40 to 0.78+/-0.17 Hz. The inhibitory responses were rapid in onset (within 1 min) and variable in duration (2-4 min). The inhibitory effects of 17betaE2 were blocked by simultaneously applied 17betaE2 antagonist ICI182,780, but not by GABA antagonist, bicuculline and phaclofen. L-Glutamate, AMPA or NMDA enhanced the activity of 71, 73 or 69% of NTS cells tested, respectively. The excitatory effects of EAA were significantly inhibited in the presence of 17betaE2. Fluorescent immunohistochemistry revealed that all subnuclei of the NTS contained high levels of estrogen receptors (ERs) immunoreactivity. These results suggest that 17betaE2 inhibits spontaneous and EAA-induced NTS neuronal activity through 17betaE2 activation of ERs.

Hay, M. (2016). Sex, the brain and hypertension: brain oestrogen receptors and high blood pressure risk factors. Clinical science (London, England : 1979), 130(1), 9-18.

Hypertension is a major contributor to worldwide morbidity and mortality rates related to cardiovascular disease. There are important sex differences in the onset and rate of hypertension in humans. Compared with age-matched men, premenopausal women are less likely to develop hypertension. However, after age 60, the incidence of hypertension increases in women and even surpasses that seen in older men. It is thought that changes in levels of circulating ovarian hormones as women age may be involved in the increase in hypertension in older women. One of the key mechanisms involved in the development of hypertension in both men and women is an increase in sympathetic nerve activity (SNA). Brain regions important for the regulation of SNA, such as the subfornical organ, the paraventricular nucleus and the rostral ventral lateral medulla, also express specific subtypes of oestrogen receptors. Each of these brain regions has also been implicated in mechanisms underlying risk factors for hypertension such as obesity, stress and inflammation. The present review brings together evidence that links actions of oestrogen at these receptors to modulate some of the common brain mechanisms involved in the ability of hypertensive risk factors to increase SNA and blood pressure. Understanding the mechanisms by which oestrogen acts at key sites in the brain for the regulation of SNA is important for the development of novel, sex-specific therapies for treating hypertension.

Consolim-Colombo, F. M., Hay, M., Smith, T. C., Elizondo-Fournier, M., & Bishop, V. S. (1996). Subcellular mechanisms of angiotensin II and arginine vasopressin activation of area postrema neurons. The American journal of physiology, 271(1 Pt 2), R34-41.

Angiotensin II (ANG II) and arginine vasopressin (AVP) act on area postrema (AP) neurons to modulate the baroreflex. Because activation of AP neurons by either ANG II or AVP increases intracellular free Ca2+ concentrations ([Ca2+]i), the goal of this study was to analyze the factors affecting the [Ca2+]i responses to ANG II and AVP. Neurons were recovered from 14- to 16-day old rats and studied after 8-14 days in culture by use of the microscopic digital image analysis for fura 2-loaded cells. The effects of ANG II (100 nM) and AVP (100 nM) on [Ca2+]i were determined in normal (2 mM) and low ( 10 nM) extracellular Ca2+ concentrations. In 143 of 240 neurons, ANG II increased [Ca2+]i 4.65-fold after 20 s, and a similar response was observed in the absence of extracellular Ca2+ (3.65-fold after 20 s). After 60 s of observation, steady-state levels of increased [Ca2+]i were still present under both conditions. Pretreatment with AT1 antagonist or pertussis toxin abolished the response to ANG II. AVP also increased [Ca2+]i (3.6-fold at peak, 20 s) in normal and low extracellular Ca2+. Pretreatment with AVP V1 antagonist or pertussis toxin abolished the response to AVP. This study indicates that ANG II-induced increases in [Ca2+]i are independent of extracellular Ca2+ concentrations and involve the activation of AT1 receptors and a pertussis toxin-sensitive G protein. Although AVP affects a fewer number of AP neurons, the mechanisms of activation are also independent of extracellular Ca2+ concentration and are mediated by a pertussis toxin-sensitive G protein.

Xue, B., Skala, K., Jones, T. A., & Hay, M. (2004). Diminished baroreflex control of heart rate responses in otoconia-deficient C57BL/6JEi head tilt mice. American journal of physiology. Heart and circulatory physiology, 287(2), H741-7.

The maintenance of stable blood pressure during postural changes is known to involve integration of vestibular and cardiovascular central regulatory mechanisms. Sensory activity in the vestibular system plays an important role in cardiovascular regulation. The purpose of this study was to determine the role of vestibular gravity receptors in normal baroreflex function. Baroreflex heart rate (HR) responses to changes in blood pressure (BP) in otoconia-deficient head tilt (het) mice (n = 8) were compared with their wild-type littermates (n = 12). The study was carried out in conscious male mice chronically implanted with arterial and venous catheters for recording BP and HR and for the infusion of vasoactive drugs. Resting HR was higher in the het mice (661 +/- 13 beats/min) than in the wild-type mice (579 +/- 20 beats/min). BP was comparable in the het (113 +/- 4 mmHg) and wild-type mice (104 +/- 4 mmHg). The slopes of reflex decreases in HR in response to phenylephrine (PE) were blunted in the het mice (-5.5 +/- 1.5 beats x min(-1) x mmHg(-1)) compared with the wild-type mice (-8.5 +/- 0.9 beats x min(-1) x mmHg(-1)). Likewise, reflex tachycardic responses to decreases in BP with sodium nitroprusside (SNP) were significantly blunted in the het mice (-0.8 +/- 0.3 beats x min(-1) x mmHg(-1)) versus the wild-type mice (-2.2 +/- 0.6 beats x min(-1) x mmHg(-1)). Frequency-domain analysis of the HR variability suggests that under resting conditions, parasympathetic contribution was lower in the het versus wild-type mice. Mapping of the expression of immediate-early gene product, c-Fos, in forebrain and brain stem nuclei in response to a BP challenge showed no differences between the wild-type and het mice. These results suggest that tonic activity of gravity receptors modulates and is required for normal function of the cardiac baroreflexes.

Xue, B., Pamidimukkala, J., & Hay, M. (2005). Sex differences in the development of angiotensin II-induced hypertension in conscious mice. American journal of physiology. Heart and circulatory physiology, 288(5), H2177-84.

Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.