Michael S Barker

Michael S Barker

Associate Professor, Ecology and Evolutionary Biology
Associate Department Head, Ecology and Evolutionary Biology
Associate Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-2213

Research Interest

Michael Barker is an evolutionary biologist studying the origins of biological diversity, particularly how abrupt genomic changes such as polyploidy, chromosomal change, and hybridization have contributed to the evolution of plant diversity. Biologists have long been fascinated by these processes because they create unique opportunities for the evolution of ecological and phenotypic novelty with the potential for relatively rapid speciation. Although assessing the importance of these abrupt changes has historically been a difficult task, advances in genomics and bioinformatics have created new opportunities for addressing these longstanding questions. By integrating new computational and evolutionary genomic tools with traditional approaches such as molecular evolution, phylogenetics, mathematical modeling, and experimental work Barker's lab currently studies 1.) the contributions of recent and ancient polyploidy to eukaryotic diversity; 2.) the evolution of chromosome number and genome organization; and 3.) the impact of hybridization on speciation and novelty.

Publications

Barker, M. S., Dlugosch, K. M., Reddy, C. C., Amyotte, S. N., & Rieseberg, L. H. (2009). SCARF: Maximizing next-generation EST assemblies for evolutionary and population genomic analyses. Bioinformatics, 25(4), 535-536.

PMID: 19129211;Abstract:

Scaffolded and Corrected Assembly of Roche 454 (SCARF) is a next-generation sequence assembly tool for evolutionary genomics that is designed especially for assembling 454 EST sequences against high-quality reference sequences from related species. The program was created to knit together 454 contigs that do not assemble during traditional de novo assembly, using a reference sequence library to orient the 454 sequences. © The Author 2009. Published by Oxford University Press. All rights reserved.

Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M. S., Burleigh, J. G., Gitzendanner, M. A., Ruhfel, B. R., Wafula, E., Der, J. P., Graham, S. W., Mathews, S., Melkonian, M., Soltis, D. E., Soltis, P. S., Miles, N. W., , Rothfels, C. J., et al. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the United States of America, 111(45), E4859-68.

Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.

Barker, M. S., Arrigo, N., Baniaga, A. E., Li, Z., & Levin, D. A. (2015). On the relative abundance of autopolyploids and allopolyploids. New Phytologist.
Hodgins, K. A., Lai, Z., Oliveira, L. O., Still, D. W., Scascitelli, M., Barker, M. S., Kane, N. C., Dempewolf, H., Kozik, A., Kesseli, R. V., Burke, J. M., Michelmore, R. W., & Rieseberg, L. H. (2014). Genomics of compositae crops: Reference transcriptome assemblies and evidence of hybridization with wild relatives. Molecular Ecology Resources, 14(1), 166-177.

Abstract:

Although the Compositae harbours only two major food crops, sunflower and lettuce, many other species in this family are utilized by humans and have experienced various levels of domestication. Here, we have used next-generation sequencing technology to develop 15 reference transcriptome assemblies for Compositae crops or their wild relatives. These data allow us to gain insight into the evolutionary and genomic consequences of plant domestication. Specifically, we performed Illumina sequencing of Cichorium endivia, Cichorium intybus, Echinacea angustifolia, Iva annua, Helianthus tuberosus, Dahlia hybrida, Leontodon taraxacoides and Glebionis segetum, as well 454 sequencing of Guizotia scabra, Stevia rebaudiana, Parthenium argentatum and Smallanthus sonchifolius. Illumina reads were assembled using Trinity, and 454 reads were assembled using MIRA and CAP3. We evaluated the coverage of the transcriptomes using BLASTX analysis of a set of ultra-conserved orthologs (UCOs) and recovered most of these genes (88-98%). We found a correlation between contig length and read length for the 454 assemblies, and greater contig lengths for the 454 compared with the Illumina assemblies. This suggests that longer reads can aid in the assembly of more complete transcripts. Finally, we compared the divergence of orthologs at synonymous sites (Ks) between Compositae crops and their wild relatives and found greater divergence when the progenitors were self-incompatible. We also found greater divergence between pairs of taxa that had some evidence of postzygotic isolation. For several more distantly related congeners, such as chicory and endive, we identified a signature of introgression in the distribution of Ks values. © 2013 John Wiley & Sons Ltd.

Barker, M. S., & Hickey, R. J. (2006). A taxonomic revision of Caribbean Adiantopsis (Pteridaceae). Annals of the Missouri Botanical Garden, 93(3), 371-401.

Abstract:

Adiantopsis Fée (Pteridaceae) is a relatively unstudied tropical cheilanthoid fern genus. In the present work, we evaluated the taxonomy and relationships among Caribbean Adiantopsis by examining 136 characters from approximately 500 herbarium specimens. This study identified nine Caribbean Adiantopsis species, three of which are newly described (A. parvisegmenta, A. pentagona, and A. vincentii). Additionally, an intriguing pattern of morphological and reticulate evolution was revealed by the analyses. Adiantopsis consists of three different laminar morphologies; palmate, pedate, and pinnate. The two pedate taxa are hypothesized to be fertile allotetraploid derivatives of the palmate A. radiata (L.) Fée and two different pinnate taxa. In this regard they parallel the origin of the South American A. Xaustralopedata Hickey, M. S. Barker & Ponce. Based on our analyses, it appears that pedate laminar morphologies in Adiantopsis independently originated multiple times via hybridization. This study provides testable hypotheses of morphological and reticulate evolution in the genus and presents a novel view of Caribbean Adiantopsis.