Michael T Marty

Michael T Marty

Assistant Professor, Chemistry and Biochemistry-Sci
Assistant Professor, Chemistry and Biochemistry - Med
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-1501

Work Summary

The Marty Lab uses mass spectrometry to study interactions of membrane proteins, peptides, and lipids within nanoscale membrane mimetics.

Research Interest

Membrane proteins play a number of critical biochemical roles and make up the majority of drug targets. Despite their importance, membrane proteins remain challenging systems for analysis due to their amphipathic nature and low expression levels. Moreover, the lipid bilayer can play an important but largely unexplored role in regulating membrane protein structure and function. New analytical and biochemical methods are necessary to better understand and design drugs to target membrane proteins.

Publications

Marty, M. T., Hoi, K. K., Gault, J., & Robinson, C. V. (2016). Probing the Lipid Annular Belt by Gas-Phase Dissociation of Membrane Proteins in Nanodiscs. Angewandte Chemie (International ed. in English), 55(2), 550-4.

Interactions between membrane proteins and lipids are often crucial for structure and function yet difficult to define because of their dynamic and heterogeneous nature. Here, we use mass spectrometry to demonstrate that membrane protein oligomers ejected from nanodiscs in the gas phase retain large numbers of lipid interactions. The complex mass spectra that result from gas-phase dissociation were assigned using a Bayesian deconvolution algorithm together with mass defect analysis, allowing us to count individual lipid molecules bound to membrane proteins. Comparison of the lipid distributions measured by mass spectrometry with molecular dynamics simulations reveals that the distributions correspond to distinct lipid shells that vary according to the type of protein-lipid interactions. Our results demonstrate that nanodiscs offer the potential for native mass spectrometry to probe interactions between membrane proteins and the wider lipid environment.