Minying Cai
Research Professor
Research Professor, BIO5 Institute
Primary Department
Department Affiliations
(520) 621-8617
Work Summary
Peptides and proteins play a vital role in almost every cellular process in living organisms. Our research discovers and determines structural information on peptides and proteins to design drugs to more effectively treat human disease.
Research Interest
Dr. Minying Cai is currently a research professor in the Department of Chemistry and Biochemistry at the University of Arizona. She has been working in the Chemistry & Biochemistry department for more than 16 years and has more than 100 publications in the area of novel drug discovery for obesity, diabetes, cancer and pain. Dr. Cai received the Ph.D. at the University of Arizona in Biochemistry and Molecular Biophysics in 2004. Before that, she had been working in Shanghai Institute of Materia Medica; Shanghai Research Center of Biotechnology in Chinese Academy of Sciences. Dr. Cai has been working on peptide based drug discovery for more than 23 years, starting with discovery of developing anti-microbial peptide and insulin related peptide drug. Sixteen years ago, she started working on melanotropin and opioid related drug discovery. Dr. Cai's research in peptides involves highly multidisciplinary areas including chemistry and biochemistry; molecular pharmacology, molecular imaging, and cancer research, with expertise in molecular pharmacology, synthetic, organic and peptide methodology, chemical and biophysical analysis and evaluation, and in vitro and in vivo expression. Dr. Cai is currently working on several projects at the interface of chemistry, pharmacology and biology within the areas of: 1. Structure based drug design and synthesis of GPCR ligands, including developing selective hMCRs ligand; 2. Developing novel biophysics tools for molecular imaging; novel biomarker for high-throughput screening system. 3. Exploiting novel scaffold via computational chemistry for small molecule therapeutics for energy balance and cancer study; 4. Creating a nanostructured integrated platform for biodetection and imaging-guided therapy. Keywords: Drug Discovery, Melanoma Prevention, neurodegenerative diseases, Obesity and Diabetes, Melanocortin System

Publications

Salamon, Z., Fitch, J., Cai, M., Tumati, S., Navratilova, E., & Tollin, G. (2009). Plasmon-waveguide resonance studies of ligand binding to integral proteins in membrane fragments derived from bacterial and mammalian cells. Analytical Biochemistry, 387(1), 95-101.

PMID: 19454250;PMCID: PMC2783692;Abstract:

A procedure has been developed for directly depositing membrane fragments derived from bacterial cells (chromatophores from Rhodopseudomonas sphaeroides) and mammalian cells (μ-opioid receptor- and MC4 receptor-transfected human embryonic kidney (HEK) cells and rat trigeminal ganglion cells) on the silica surface of a plasmon-waveguide resonance (PWR) spectrometer. Binding of ligands (cytochrome c2 for the chromatophores, the peptide agonists DAMGO and melanotan-II that are specific for the μ-opioid and MC4 receptors, and two nonpeptide agonists that are specific for the CB1 receptor) to these membrane fragments has been observed and characterized with high sensitivity using PWR spectral shifts. The KD values obtained are in excellent agreement with conventional pharmacological assays and with prior PWR studies using purified receptors inserted into deposited lipid bilayer membranes. These studies provide a new tool for obtaining useful biological information about receptor-mediated processes in real biological membranes. © 2009 Elsevier Inc. All rights reserved.

Cai, M., Hruby, V. J., & Cai, M. -. (2013). Design of peptide and peptidomimetic ligands with novel pharmacological activity profiles. Annual review of pharmacology and toxicology, 53.

Peptide hormones and neurotransmitters are of central importance in most aspects of intercellular communication and are involved in virtually all degenerative diseases. In this review, we discuss physicochemical approaches to the design of novel peptide and peptidomimetic agonists, antagonists, inverse agonists, and related compounds that have unique biological activity profiles, reduced toxic side effects, and, if desired, the ability to cross the blood-brain barrier. Designing ligands for specific biological and medical needs is emphasized, as is the close collaboration of chemists and biologists to maximize the chances for success. Special emphasis is placed on the use of conformational (ϕ-ψ space) and topographical (χ space) considerations in design.