Nathan J Cherrington

Nathan J Cherrington

Professor, Pharmacology and Toxicology
Associate Dean, Research and Graduate Studies - College of Pharmacy
Director, Southwest Environmental Health Science Center
Professor, Public Health
Professor, Clinical Translational Sciences
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-0219

Research Interest

Numerous drug-induced and environmental exposure-related toxicities are the result of inter-individual variation in the ADME processes of absorption, distribution, metabolism and elimination that control the fate of these compounds from the body. Alterations in these processes provide the mechanistic basis for individual variability in response to drugs and environmental exposures. A common perception is that variability in response is due to genetic polymorphisms within the drug metabolizing enzyme and transporter genes. While there are numerous examples of these differences that play a major role in the susceptibility of genetic subpopulations for specific toxicities, the potential for transient phenotypic conversion due to temporary environmental changes, such as inflammation and disease, are often overlooked.Due to the ensuing liver damage caused by the progressive stages of NAFLD, gene expression patterns can change dramatically resulting in a phenoconversion resembling genetic polymorphisms. Because the liver plays such a key role in the metabolism and disposition of xenobiotics, this temporary phenoconversion could lead to the inability of patients to properly metabolize and excrete drugs and environmental toxicants, increasing the risk of some adverse drug reactions and environmental toxicities.

Publications

Cherrington, N., Fisher, C. D., Lickteig, A. J., Augustine, L. M., Ranger-Moore, J., Jackson, J. P., Ferguson, S. S., & Cherrington, N. J. (2009). Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug metabolism and disposition: the biological fate of chemicals, 37(10).

Members of the cytochrome P450 (P450) enzyme families CYP1, CYP2, and CYP3 are responsible for the metabolism of approximately 75% of all clinically relevant drugs. With the increased prevalence of nonalcoholic fatty liver disease (NAFLD), it is likely that patients with this disease represent an emerging population at significant risk for alterations in these important drug-metabolizing enzymes. The purpose of this study was to determine whether three progressive stages of human NALFD alter hepatic P450 expression and activity. Microsomes isolated from human liver samples diagnosed as normal, n = 20; steatosis, n = 11; nonalcoholic steatohepatitis (NASH) (fatty liver), n = 10; and NASH (no longer fatty), n = 11 were analyzed for P450 mRNA, protein, and enzyme activity. Microsomal CYP1A2, CYP2D6, and CYP2E1 mRNA levels were decreased with NAFLD progression, whereas CYP2A6, CYP2B6, and CYP2C9 mRNA expression increased. Microsomal protein expression of CYP1A2, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 tended to decrease with NAFLD progression. Likewise, functional activity assays revealed decreasing trends in CYP1A2 (p = 0.001) and CYP2C19 (p = 0.05) enzymatic activity with increasing NAFLD severity. In contrast, activity of CYP2A6 (p = 0.001) and CYP2C9 (diclofenac, p = 0.0001; tolbutamide, p = 0.004) was significantly increased with NAFLD progression. Increased expression of proinflammatory cytokines tumor necrosis factor alpha and interleukin 1beta was observed and may be responsible for observed decreases in respective P450 activity. Furthermore, elevated CYP2C9 activity during NAFLD progression correlated with elevated hypoxia-induced factor 1alpha expression in the later stages of NAFLD. These results suggest that significant and novel changes occur in hepatic P450 activity during progressive stages of NAFLD.

C., S., Cherrington, N. J., Choudhuri, S., Hartley, D. P., & Klaassen, C. D. (2002). Gender-specific and developmental influences on the expression of rat organic anion transporters. Journal of Pharmacology and Experimental Therapeutics, 301(1), 145-151.

PMID: 11907168;Abstract:

Rat organic anion transporter 1 (Oat1), Oat2, and Oat3, members of the organic anion transporter family, transport some organic anions across cellular membranes. Previously, highest Oat1 and Oat3 mRNA expression was reported in kidney and Oat2 in liver. However, gender and developmental differences in Oat expression remain unknown. This study describes gender- and age-specific patterns of rat organic anion transporter expression in various tissues. Oat mRNA expression was evaluated in adult male and female Sprague-Dawley rat tissues, and developmental expression was also determined in kidneys of Sprague-Dawley rats ranging in age from days 0 through 45. Expression was quantified using branched-DNA signal amplification. Oat1 mRNA expression was primarily observed in kidney. Surprisingly, Oat2 mRNA expression was also highest in kidney rather than in liver. Moreover, considerably higher Oat2 levels were seen in female kidney as compared with male. Finally, Oat3 mRNA expression was highest in kidney of both genders, whereas a male-predominant pattern was observed in liver. At birth, all kidney Oat mRNA levels were low. Renal Oat1 expression gradually increased throughout development, approaching adult levels at 30 days of age, where at days 40 and 45 Oat1 levels were greater in males than females. Oat2 expression in kidney was minimal through day 30 but increased dramatically at day 35 in females only. Lastly, Oat3 mRNA expression in kidney matured earliest, rapidly increasing from birth through day 10. These data indicate that Oat mRNA expression is primarily localized to the kidney, and observed expression patterns may explain some previously recognized age- and gender-dependent toxicities associated with chemical exposure.

Dzierlenga, A. L., Clarke, J. D., & Cherrington, N. J. (2016). Nonalcoholic Steatohepatitis Modulates Membrane Protein Retrieval and Insertion Processes. Drug metabolism and disposition: the biological fate of chemicals, 44(11), 1799-1807.

Interindividual variability in drug response in nonalcoholic steatohepatitis (NASH) can be mediated by altered regulation of drug metabolizing enzymes and transporters. Among these is the mislocalization of multidrug resistance-associated protein (MRP2)/Mrp2 away from the canalicular membrane, which results in decreased transport of MRP2/Mrp2 substrates. The exact mechanism of this mislocalization is unknown, although increased activation of membrane retrieval processes may be one possibility. The current study measures the activation status of various mediators implicated in the active membrane retrieval or insertion of membrane proteins to identify which processes may be important in rodent methionine and choline deficient diet-induced NASH. The mediators currently known to be associated with transporter mislocalization are stimulated by oxidative stressors and choleretic stimuli, which play a role in the pathogenesis of NASH. The activation of protein kinases PKA, PKCα, PKCδ, and PKCε and substrates radixin, myristoylated alanine-rich C-kinase substrate, and Rab11 were measured by comparing the expression, phosphorylation, and membrane translocation between control and NASH. Many of the mediators exhibited altered activation in NASH rats. Consistent with membrane retrieval of Mrp2, NASH rats exhibited a decreased phosphorylation of radixin and increased membrane localization of PKCδ and PKCε, thought to be mediators of radixin dephosphorylation. Altered activation of PKCδ, PKA, and PKCα may impair the Rab11-mediated active insertion of Mrp2. Overall, these data suggest alterations in membrane retrieval and insertion processes that may contribute to altered localization of membrane proteins in NASH.

Clarke, J. D., Novak, P., Lake, A. D., Hardwick, R. N., & Cherrington, N. J. (2017). Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver international : official journal of the International Association for the Study of the Liver.

N-linked glycosylation of proteins is critical for proper protein folding and trafficking to the plasma membrane. Drug transporters are one class of proteins that have reduced function when glycosylation is impaired. N-linked glycosylation of plasma proteins has also been investigated as a biomarker for several liver diseases, including non-alcoholic fatty liver disease (NAFLD). The purpose of this study was to assess the transcriptomic expression of genes involved in protein processing and glycosylation, and to determine the glycosylation status of key drug transporters during human NAFLD progression.

Choudhuri, S., Cherrington, N. J., Li, N., & Klaassen, C. D. (2003). Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug metabolism and disposition: the biological fate of chemicals, 31(11), 1337-45.

The aim of this study was to quantitatively determine the constitutive expression levels of various transporter mRNAs in rat choroid plexus. To provide a reference for the relative expression levels, the expression of various transporter mRNAs in choroid plexus were compared with that in liver, kidney, and ileum. The mRNA levels of multidrug resistance protein (Mrp)1, 2, 3, 4, 5, and 6; multidrug resistance (Mdr)1a, 1b, and 2; organic anion transporting polypeptide (Oatp)1, 2, 3, 4, 5, 9, 12, and Oat-K (1/2); organic anion transporter (Oat)1, 2, and 3; organic cation transporter (Oct)1, 2, 3, N1, and N2; bile acid transporters sodium taurocholate cotransporting polypeptide (Ntcp), bile salt excretory protein (Bsep), and ileal bile acid transporter (Ibat); divalent metal transporter 1 (DMT1), Menke's and Wilson's metal transporters; equilibrative nucleotide transporters (Ent) 1 and 2, and constitutive nucleotide transporters (Cnt)1 and 2; peptide transporters (Pept)1 and 2; as well as ATP-binding cassette (Abc)G5 and 8 were measured in choroid plexus by the branched DNA signal amplification method. Mrp1, 4, and 5, Oatp3, Menke's transporter, DMT1, Ent1, and Pept2 mRNAs were expressed in choroid plexus at higher levels than in liver, kidney, or ileum. OctN1 and N2, Oatp2, Oat2 and 3, and Cnt1 and 2 mRNAs expressions were detectable in choroid plexus, but the levels were lower compared with that in liver, kidney, or ileum. The remaining transporters [Mrp2, Mrp3, Oct1, Oct2, Oatp1, Oatp4, Oatp5, Oatp12, Oat-K (1/2), Ntcp, Bsep, Ibat, Mdr1a, Mdr1b, Mdr2, Oat1, Ent2, Pept1, AbcG5, AbcG8] were expressed at very low levels in choroid plexus. The constitutive expression levels of different transporters in choroid plexus may provide an insight into the range of xenobiotics that can potentially be transported by the choroid plexus, thereby providing a means of xenobiotic detoxification in the brain.