Nathan J Cherrington

Nathan J Cherrington

Professor, Pharmacology and Toxicology
Associate Dean, Research and Graduate Studies - College of Pharmacy
Director, Southwest Environmental Health Science Center
Professor, Public Health
Professor, Clinical Translational Sciences
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-0219

Research Interest

Numerous drug-induced and environmental exposure-related toxicities are the result of inter-individual variation in the ADME processes of absorption, distribution, metabolism and elimination that control the fate of these compounds from the body. Alterations in these processes provide the mechanistic basis for individual variability in response to drugs and environmental exposures. A common perception is that variability in response is due to genetic polymorphisms within the drug metabolizing enzyme and transporter genes. While there are numerous examples of these differences that play a major role in the susceptibility of genetic subpopulations for specific toxicities, the potential for transient phenotypic conversion due to temporary environmental changes, such as inflammation and disease, are often overlooked.Due to the ensuing liver damage caused by the progressive stages of NAFLD, gene expression patterns can change dramatically resulting in a phenoconversion resembling genetic polymorphisms. Because the liver plays such a key role in the metabolism and disposition of xenobiotics, this temporary phenoconversion could lead to the inability of patients to properly metabolize and excrete drugs and environmental toxicants, increasing the risk of some adverse drug reactions and environmental toxicities.

Publications

Clarke, J. D., Hardwick, R. N., Lake, A. D., Canet, M. J., & Cherrington, N. J. (2014). Experimental nonalcoholic steatohepatitis increases exposure to simvastatin hydroxy acid by decreasing hepatic organic anion transporting polypeptide expression. Journal of Pharmacology and Experimental Therapeutics, 348(3), 452-458.

PMID: 24403518;Abstract:

Simvastatin (SIM)-induced myopathy is a dose-dependent adverse drug reaction (ADR) that has been reported to occur in 18.2% of patients receiving a 40- to 80-mg dose. The pharmacokinetics of SIM hydroxy acid (SIMA), the bioactive form of SIM, and the occurrence of SIM-induced myopathy are linked to the function of the organic anion transporting polypeptide (Oatp) hepatic uptake transporters. Genetic polymorphisms in SLCO1B1, the gene for human hepatic OATP1B1, cause decreased elimination of SIMA and increased risk of developing myopathy. Nonalcoholic steatohepatitis (NASH) is the most severe form of nonalcoholic fatty liver disease, and is known to alter drug transporter expression and drug disposition. The purpose of this studywas to assess themetabolism and disposition of SIM in a diet-induced rodent model of NASH. Rats were fed a methionine- and choline-deficient diet for 8 weeks to induce NASH and SIM was administered intravenously. Dietinduced NASH caused increased plasma retention and decreased biliary excretion of SIMA due to decreased protein expression of multiple hepatic Oatps. SIM exhibited increased volume of distribution in NASH as evidenced by increased muscle, decreased plasma, and no change in biliary concentrations. Although Cyp3a and Cyp2c11 proteins were decreased in NASH, no alterations in SIMmetabolism were observed. These data, in conjunction with our previous data showing that human NASH causes a coordinated downregulation of hepatic uptake transporters, suggest that NASHmediated transporter regulation may play a role in altered SIMA disposition and the occurrence of myopathy. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

Hardwick, R. N., Fisher, C. D., Street, S. M., Canet, M. J., & Cherrington, N. J. (2012). Molecular mechanism of altered ezetimibe disposition in nonalcoholic steatohepatitis. Drug Metabolism and Disposition, 40(3), 450-460.

PMID: 22112382;PMCID: PMC3286272;Abstract:

Ezetimibe (EZE) lowers serum lipid levels by blocking cholesterol uptake in the intestine. Disposition of EZE and its pharmacologically active glucuronide metabolite (EZE-GLUC) to the intestine is dependent on hepatobiliary efflux. Previous studies suggested that hepatic transporter expression and function may be altered during nonalcoholic steatohepatitis (NASH). The purpose of the current study was to determine whether NASH-induced changes in the expression and function of hepatic transporters result in altered disposition of EZE and EZE-GLUC. Rats fed a methionine- and choline-deficient (MCD) diet for 8 weeks were administered 10 mg/kg EZE either by intravenous bolus or oral gavage. Plasma and bile samples were collected over 2 h followed by terminal urine and tissue collection. EZE and EZE-GLUC concentrations were determined by liquid chromatography-tandem mass spectrometry. The sinusoidal transporter Abcc3 was induced in MCD rats, which correlated with increased plasma concentrations of EZE-GLUC, regardless of dosing method. Hepatic expression of the biliary transporters Abcc2 and Abcb1 was also increased in MCD animals, but the biliary efflux of EZE-GLUC was slightly diminished, whereas biliary bile acid concentrations were unaltered. The cellular localization of Abcc2 and Abcb1 appeared to be internalized away from the canalicular membrane in MCD livers, providing a mechanism for the shift to plasma drug efflux. The combination of induced expression and altered localization of efflux transporters in NASH shifts the disposition profile of EZE-GLUC toward plasma retention away from the site of action. This increased plasma retention of drugs in NASH may have implications for the pharmacological effect and safety of numerous drugs. Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics.

Augustine, L. M., Markelewicz Jr., R. J., Boekelheide, K., & Cherrington, N. J. (2005). Xenobiotic and endobiotic transporter MRNA expression in the blood-testis barrier. Drug Metabolism and Disposition, 33(1), 182-189.

PMID: 15494472;Abstract:

A major function of xenobiotic and endobiotic transporters is to move a wide range of organic substances across cell membranes. Sertoli cells play an important role in protecting developing germ cells by forming a physiological barrier, limiting exposure to potentially toxic substrates, or conversely, facilitating uptake of xenobiotics within the testis. The aim of this study was to quantitatively determine the constitutive expression of various transporters in isolated Sertoli cells from adult Sprague-Dawley rats. The following mRNA levels were measured in isolated Sertoli cells by the branched DNA signal amplification method, multidrug resistance (Mdr) protein 1a, 1b, and 2; multiple drug resistance protein (Mrp) 1, 2, 3, 4, 5, 6, 7, and 8; sodium taurocholate cotransporting polypeptide; bile salt excretory protein; ileal bile acid transporter; AbcG5 and AbcG8; organic anion transporting polypeptide (Oatp) 1, 2, 3, 4, 5, 9, and 12; prostaglandin transporter (Pgt); testis-specific transporter (Tst) 1 and Tst2; organic anion transporter (Oat) 1, 2, 3, and K; organic cation transporter (Oct) 1, 2, 3, N1, and N2; divalent metal transporter (Dmt) 1, Menke's, and Wilson's; zinc transporter (Znt) 1; equilibrative nucleoside transporter (Ent) 1 and 2; concentrative nucleoside transporter (Cnt) 1 and 2; and peptide transporter (Pept) 1 and 2. Levels were also determined in whole testis, liver, kidney, and ileum to provide a reference for determining relative expression levels. Mrp8, Tst1 and 2, and Ent1 and 2 were expressed in Sertoli cells at higher levels than in liver, kidney, or ileum, whereas Mrp1, 5, and 7, Mdr2, Oatp3, Oat2, OctN2, Dmt1, Menke's, Wilson's, and Znt1 were all significantly expressed in Sertoli cells, but Sertoli cell expression was not the tissue of highest expression. The remaining transporters were expressed at low levels in isolated Sertoli cells. Additionally, expression levels of Mrp1, Mrp7, Mrp8, Tst1, Tst2, OctN2, Wilson's, Znt1, Ent1, and Ent2 were greater in isolated Sertoli cells than in whole testis. Constitutive expression of transporters in Sertoli cells may provide an insight into the range of xenobiotics that can potentially be transported by Sertoli cells and thereby provide a mechanistic understanding of blood-testis barrier function.

Canet, M. J., Merrell, M. D., Hardwick, R. N., Bataille, A. M., Campion, S. N., Ferreira, D. W., Xanthakos, S. A., Manautou, J. E., Hesham A-Kader, H., Erickson, R. P., & Cherrington, N. J. (2015). Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis. Drug metabolism and disposition: the biological fate of chemicals, 43(6), 829-35.

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, representing a spectrum of liver pathologies that include simple hepatic steatosis and the more advanced nonalcoholic steatohepatitis (NASH). The current study was conducted to determine whether pediatric NASH also results in altered disposition of acetaminophen (APAP) and its two primary metabolites, APAP-sulfate and APAP-glucuronide. Pediatric patients with hepatic steatosis (n = 9) or NASH (n = 3) and healthy patients (n = 12) were recruited in a small pilot study design. All patients received a single 1000-mg dose of APAP. Blood and urine samples were collected at 1, 2, and 4 hours postdose, and APAP and APAP metabolites were determined by high-performance liquid chromatography. Moreover, human liver tissues from patients diagnosed with various stages of NAFLD were acquired from the Liver Tissue Cell Distribution System to investigate the regulation of the membrane transporters, multidrug resistance-associated protein 2 and 3 (MRP2 and MRP3, respectively). Patients with the more severe disease (i.e., NASH) had increased serum and urinary levels of APAP-glucuronide along with decreased serum levels of APAP-sulfate. Moreover, an induction of hepatic MRP3 and altered canalicular localization of the biliary efflux transporter, MRP2, describes the likely mechanism for the observed increase in plasma retention of APAP-glucuronide, whereas altered regulation of sulfur activation genes may explain decreased sulfonation activity in NASH. APAP-glucuronide and APAP-sulfate disposition is altered in NASH and is likely due to hepatic membrane transporter dysregulation as well as altered intracellular sulfur activation.

Clarke, J. D., Sharapova, T., Lake, A. D., Blomme, E., Maher, J., & Cherrington, N. J. (2014). Circulating microRNA 122 in the methionine and choline-deficient mouse model of non-alcoholic steatohepatitis. Journal of applied toxicology : JAT, 34(6), 726-32.

Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) and is a major cause of liver cirrhosis and hepatic failure. The methionine choline-deficient diet (MCD) is a frequently used hepatotoxicity animal model of NASH that induces hepatic transaminase (ALT, AST) elevations and hepatobiliary histological changes similar to those observed in human NASH. Liver-specific microRNA-122 (miR-122) has been shown as a key regulator of cholesterol and fatty acid metabolism in adult liver, and has recently been proposed as a sensitive and specific circulating biomarker of hepatic injury. The purpose of this study was to assess miR-122 serum levels in mice receiving an MCD diet for 0, 3, 7, 14, 28 and 56 days and compare the performance vs. routine clinical chemistry when benchmarked against the histopathological liver findings. MiR-122 levels were quantified in serum using RT-qPCR. Both miR-122 and ALT/AST levels were significantly elevated in serum at all timepoints. MiR-122 levels increased on average by 40-fold after 3 days of initiating the MCD diet, whereas ALT and AST changes were 4.8- and 3.3-fold, respectively. In general, miR-122 levels remained elevated across all time points, whereas the ALT/AST increases were less robust but correlated with the progressive severity of NASH as assessed by histopathology. In conclusion, serum levels of miR-122 can potentially be used as a sensitive biomarker for the early detection of hepatotoxicity and can aid in monitoring the extent of NAFLD-associated liver injury in mouse efficacy models.