Parker B Antin

Parker B Antin

Associate Dean, Research-Agriculture and Life Sciences
Associate Vice President for Research, Agriculture - Life and Veterinary Sciences / Cooperative Extension
Professor, Cellular and Molecular Medicine
Professor, Molecular and Cellular Biology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-5242

Research Interest

Parker Antin is Professor of Cellular and Molecular Medicine in the College of Medicine, Associate Vice President for Research for the Division of Agriculture, Life and Veterinary Medicine, and Cooperative Extension, and Associate Dean for Research in the College of Agriculture and Life Sciences. In his positions of Associate Vice President and Associate Dean, he is responsible for developing and implementing the research vision for the Colleges of Agriculture and Life Sciences and the College of Veterinary Medicine, with total research expenditures of approximately $65M per year. His responsibilities include oversight of research strategy and portfolio investment, grants and contracts pre award services, research intensive faculty hires and retentions, research communication and marketing, research facilities, and research compliance services. In collaboration with Division and College leadership teams, he has shared responsibilities for philanthropy, budgets and information technology. Dr. Antin is a vertebrate developmental biologist whose research is concerned with the molecular mechanisms of embryonic development. His research has been supported by NIH, NSF, NASA, USDA, and the DOE, as well as several private foundations including the American Heart Association and the Muscular Dystrophy Association, He is the Principal Investigator of CyVerse, a $115M NSF funded cyberinfrastructure project whose mission is to design, deploy and expand a national cyberinfrastructure for life sciences research, and train scientists in its use (http://cyverse.org). With 65,000 users worldwide, CyVerse enables scientists to manage and store data and experiments, access high-performance computing, and share data and results with colleagues and the public. Dr. Antin is also active nationally in the areas of science policy and funding for science. He is a past President of the Federation of Societies for Experimental Biology (FASEB), an umbrella science policy and advocacy organization representing 32 scientific societies and 135,000 scientists. His continued work with FASEB, along with his duties as Associate Vice President and Associate Dean for Research, and CyVerse PI, brings him frequently to Washington, DC, where he advocates for support of science and science policy positions that enhance the scientific enterprise.

Publications

Rodgers, L. S., Lalani, S., Hardy, K. M., Xiang, X., Broka, D., Antin, P. B., & Camenisch, T. D. (2006). Depolymerized hyaluronan induces vascular endothelial growth factor, a negative regulator of developmental epithelial-to-mesenchymal transformation. Circulation Research, 99(6), 583-589.

PMID: 16931798;Abstract:

Cardiac malformations constitute the most common birth defects, of which heart septal and valve defects are the most frequent forms diagnosed in infancy. These cardiac structures arise from the endocardial cushions through dynamic interactions between cells and the extracellular matrix (cardiac jelly). Targeted deletion of the hyaluronan synthase-2 (Has2) gene in mice results in an absence of hyaluronan (HA), cardiac jelly, and endocardial cushions, a loss of vascular integrity, and death at embryonic day 9.5. Despite the requirements for Has2 and its product, HA, in the developing heart, little is known about the normal processing and removal of HA during development. Cell culture studies show that HA obtains new bioactivity after depolymerization into small oligosaccharides. We previously showed reduction in Has2 expression and diminished presence of HA at later stages of heart development as tissue remodeling formed the leaflets of the cardiac valves. Here we show that small oligosaccharide forms of HA (o-HA) act antagonistically to developmental epithelial-to-mesenchymal transformation (EMT), which is required to generate the progenitor cells that populate the endocardial cushions. We further show that o-HA induces vascular endothelial growth factor (VEGF), which acts as a negative regulator of EMT. This is the first report illustrating a functional link between oligosaccharide HA and VEGF. Collectively, our data indicate that following endocardial cell EMT, native HA is likely processed to o-HA, which stimulates VEGF activity to attenuate cardiac developmental EMT. © 2006 American Heart Association, Inc.

Ward, A., Baldwin, T. O., & Antin, P. B. (2016). Research data: Silver lining to irreproducibility. Nature, 532(7598), 177.
Antin, P. B., Taylor, R. G., & Yatskievych, T. (1994). Precardiac mesoderm is specified during gastrulation in quail. Developmental Dynamics, 200(2), 144-154.

PMID: 7919500;Abstract:

The establishment of precardiac mesoderm and the role of anterolateral endoderm and ectoderm in regulating heart muscle cell development have been studied in quail using explant cultures. Mesoderm from precardiac regions of stage 4+-6 embryos was explanted alone or in combination with adjacent endoderm or ectoderm, cultured for 12 to 72 hr in several types of culture media, and then assayed by morphological and immunocytochemical criteria for the presence of differentiated cardiac myocytes. Results show that mesoderm from heart forming regions is capable of differentiating into beating cardiac myocytes in a defined medium lacking potential signaling molecules by stage 4+, the earliest time at which we could isolate mesoderm from adjacent cell layers. Although an interaction with anterolateral endoderm from stage 4+ onward is therefore not required for the specification of precardiac mesoderm in quail, explants consisting of mesoderm plus endoderm show an enhanced rate of myocyte differentiation and a shortened delay between expression of myosin heavy chain and the onset of beating. Endoderm also plays a central role in early heart morphogenesis since beating heart tubes form only in explants that contain both mesoderm and endoderm. In contrast, ectoderm from stage 4+-5+ embryos does not support development of precardiac mesoderm. These results suggest that early heart muscle cell development involves an initial specification step that occurs prior to or during gastrulation and which leads to the appearance of myocardial precursor cells, and a subsequent differentiation step during which endoderm plays a central role in enhancing the rate of myocyte differentiation and the degree of heart tube morphogenesis.

Cooley, J. R., Yatskievych, T. A., & Antin, P. B. (2014). Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken. Developmental Dynamics, 243(3), 497-508.

Abstract:

Background: Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. Results: Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. Conclusions: TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis. Developmental Dynamics 243:497-508, 2014. © 2013 Wiley Periodicals, Inc.

Antin, P. B., Zhang, W., Bales, M. A., Garriock, R. J., & Yatskievych, T. A. (2002). Erratum: Precocious expression of cardiac troponin T in early chick embryos is independent of bone morphogenetic protein signaling (Developmental Dynamics). Developmental Dynamics, 225(3), 376-.