Samuel K Campos
Associate Professor, BIO5 Institute
Associate Professor, Cancer Biology - GIDP
Associate Professor, Immunobiology
Associate Professor, Molecular and Cellular Biology
Primary Department
Department Affiliations
(520) 626-4842
Work Summary
We aim to understand the mechanisms of HPV infection, the cellular responses to HPV infection, and how the interplay between host and virus influences the outcome
Research Interest
Samuel Campos, PhD, studies early events of Human Papillomavirus (HPV) infection. HPVs are small, non-enveloped DNA viruses that cause a variety of lesions ranging from benign waters to cervical cancers. Although over 100 types of HPVs have been identified, HPV16 is the most prevalent, and is alone responsible for more than 50% of cervical cancers in women worldwide. Dr. Campos and his lab study the mechanisms of HPV virus transmission at a cellular level, in hopes to discover new approaches for the prevention and treatment of HPV.HPV16 virions consist of an ~8kb circular dsDNA genome packaged into a ~60 nm protein capsid. The genome is condensed with cellular histones and exists in a chromatin-like state. The capsid is comprised of 72 pentamers of the major capsid protein L1 and up to 72 molecules of the minor capsid protein L2, localized along the inner capsid surface, within the central cavities beneath the L1 pentamers. Mature HPV16 virions exist in an oxidized state, with adjacent L1 pentamers crosslinked together by disulfide bonds to stabilize the capsid. In order to establish an infection, HPV16 virions must bind and penetrate host cells, ultimately delivering their genomes to the host cell nucleus to initiate early gene expression, cell cycle progression, and genome replication. Non-enveloped viruses are faced with the challenge of getting their genetic material across a cellular membrane and often overcome this by disrupting the endosomal or lysosomal membranes and translocating to the cellular cytoplasm during the course of intracellular virion trafficking. Keywords: virology, microbiology, virus-host interaction, HPV


Campos, S. K., Chapman, J. A., Deymier, M. J., Bronnimann, M. P., & Ozbun, M. A. (2012). Opposing effects of bacitracin on human papillomavirus type 16 infection: enhancement of binding and entry and inhibition of endosomal penetration. Journal of virology, 86(8), 4169-81.

Cell invasion by human papillomavirus type 16 (HPV16) is a complex process relying on multiple host cell factors. Here we describe an investigation into the role of cellular protein disulfide isomerases (PDIs) by studying the effects of the commonly used PDI inhibitor bacitracin on HPV16 infection. Bacitracin caused an unusual time-dependent opposing effect on viral infection. Enhanced cellular binding and entry were observed at early times of infection, while inhibition was observed at later times postentry. Bacitracin was rapidly taken up by host cells and colocalized with HPV16 at late times of infection. Bacitracin had no deleterious effect on HPV16 entry, capsid disassembly, exposure of L1/L2 epitopes, or lysosomal trafficking but caused a stark inhibition of L2/viral DNA (vDNA) endosomal penetration and accumulation at nuclear PML bodies. γ-Secretase has recently been implicated in the endosomal penetration of L2/vDNA, but bacitracin had no effect on γ-secretase activity, indicating that blockage of this step occurs through a γ-secretase-independent mechanism. Transient treatment with the reductant β-mercaptoethanol (β-ME) was able to partially rescue the virus from bacitracin, suggesting the involvement of a cellular reductase activity in HPV16 infection. Small interfering RNA (siRNA) knockdown of cellular PDI and the related PDI family members ERp57 and ERp72 reveals a potential role for PDI and ERp72 in HPV infection.

Campos, S., Bronnimann, M. P., Chapman, J. A., Park, C. K., & Campos, S. K. (2013). A transmembrane domain and GxxxG motifs within L2 are essential for papillomavirus infection. Journal of virology, 87(1).

During cellular invasion, human papillomavirus type 16 (HPV16) must transfer its viral genome (vDNA) across the endosomal membrane prior to its accumulation at nuclear PML bodies for the establishment of infection. After cellular uptake, the capsid likely undergoes pH-dependent disassembly within the endo-/lysosomal compartment, thereby exposing hidden domains in L2 that facilitate membrane penetration of L2/vDNA complexes. In an effort to identify regions of L2 that might physically interact with membranes, we have subjected the L2 sequence to multiple transmembrane (TM) domain prediction algorithms. Here, we describe a conserved TM domain within L2 (residues 45 to 67) and investigate its role in HPV16 infection. In vitro, the predicted TM domain adopts an alpha-helical structure in lipid environments and can function as a real TM domain, although not as efficiently as the bona fide TM domain of PDGFR. An L2 double point mutant renders the TM domain nonfunctional and blocks HPV16 infection by preventing endosomal translocation of vDNA. The TM domain contains three highly conserved GxxxG motifs. These motifs can facilitate homotypic and heterotypic interactions between TM helices, activities that may be important for vDNA translocation. Disruption of some of these GxxxG motifs resulted in noninfectious viruses, indicating a critical role in infection. Using a ToxR-based homo-oligomerization assay, we show a propensity for this TM domain to self-associate in a GxxxG-dependent manner. These data suggest an important role for the self-associating L2 TM domain and the conserved GxxxG motifs in the transfer of vDNA across the endo-/lysosomal membrane.

Calton, C. M., Bronnimann, M. P., Manson, A. R., Li, S., Chapman, J. A., Suarez-Berumen, M., Williamson, T. R., Molugu, S. K., Bernal, R. A., & Campos, S. K. (2017). Translocation of the papillomavirus L2/vDNA complex across the limiting membrane requires the onset of mitosis. PLoS pathogens, 13(5), e1006200.

The human papillomavirus type 16 (HPV16) L2 protein acts as a chaperone to ensure that the viral genome (vDNA) traffics from endosomes to the trans-Golgi network (TGN) and eventually the nucleus, where HPV replication occurs. En route to the nucleus, the L2/vDNA complex must translocate across limiting intracellular membranes. The details of this critical process remain poorly characterized. We have developed a system based on subcellular compartmentalization of the enzyme BirA and its cognate substrate to detect membrane translocation of L2-BirA from incoming virions. We find that L2 translocation requires transport to the TGN and is strictly dependent on entry into mitosis, coinciding with mitotic entry in synchronized cells. Cell cycle arrest causes retention of L2/vDNA at the TGN; only release and progression past G2/M enables translocation across the limiting membrane and subsequent infection. Microscopy of EdU-labeled vDNA reveals a rapid and dramatic shift in vDNA localization during early mitosis. At late G2/early prophase vDNA egresses from the TGN to a pericentriolar location, accumulating there through prometaphase where it begins to associate with condensed chromosomes. By metaphase and throughout anaphase the vDNA is seen bound to the mitotic chromosomes, ensuring distribution into both daughter nuclei. Mutations in a newly defined chromatin binding region of L2 potently blocked translocation, suggesting that translocation is dependent on chromatin binding during prometaphase. This represents the first time a virus has been shown to functionally couple the penetration of limiting membranes to cellular mitosis, explaining in part the tropism of HPV for mitotic basal keratinocytes.

Bergant Marušič, M., Ozbun, M. A., Campos, S. K., Myers, M. P., & Banks, L. (2012). Human papillomavirus L2 facilitates viral escape from late endosomes via sorting nexin 17. Traffic (Copenhagen, Denmark), 13(3), 455-67.

The human papillomavirus (HPV) L2 capsid protein plays an essential role during the early stages of viral infection, but the molecular mechanisms underlying its mode of action remain obscure. Using a proteomic approach, we have identified the adaptor protein, sorting nexin 17 (SNX17) as a strong interacting partner of HPV L2. This interaction occurs through a highly conserved SNX17 consensus binding motif, which is present in the majority of HPV L2 proteins analysed. Using mutants of L2 defective for SNX17 interaction, or siRNA ablation of SNX17 expression, we demonstrate that the interaction between L2 and SNX17 is essential for viral infection. Furthermore, loss of the L2-SNX17 interaction results in enhanced turnover of the L2 protein and decreased stability of the viral capsids, and concomitantly, there is a dramatic decrease in the efficiency with which viral genomes transit to the nucleus. Indeed, using a range of endosomal and lysosomal markers, we show that capsids defective in their capacity to bind SNX17 transit much more rapidly to the lysosomal compartment. These results demonstrate that the L2-SNX17 interaction is essential for viral infection and facilitates the escape of the L2-DNA complex from the late endosomal/lysosomal compartments.

Christakos, K. J., Chapman, J. A., Fane, B. A., & Campos, S. K. (2015). PhiXing-it, displaying foreign peptides on bacteriophage ΦX174. Virology, 488, 242-248.
BIO5 Collaborators
Samuel K Campos, Bentley A Fane

Although bacteriophage φX174 is easy to propagate and genetically tractable, it is use as a peptide display platform has not been explored. One region within the φX174 major spike protein G tolerated 13 of 16 assayed insertions, ranging from 10 to 75 amino acids. The recombinant proteins were functional and incorporated into infectious virions. In the folded protein, the peptides would be icosahedrally displayed within loops that extend from the protein׳s β-barrel core. The well-honed genetics of φX174 allowed permissive insertions to be quickly identified by the cellular phenotypes associated with cloned gene expression. The cloned genes were easily transferred from plasmids to phage genomes via recombination rescue. Direct ELISA validated several recombinant virions for epitope display. Some insertions conferred a temperature-sensitive (ts) protein folding defect, which was suppressed by global suppressors in protein G, located too far away from the insertion to directly alter peptide display.