Steven Goldman

Steven Goldman

Professor, Medicine - (Research Scholar Track)
Research Scientist
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-2939

Work Summary

Our lab has a new treatment for heart failure. We have a biodegradable graft seeded with adult human cells that we put on the surface of the heart. The potential is to regenerate new heart muscle

Research Interest

Research in my laboratory over the last 30 years has focused on chronic heart failure (CHF), its pathophysiology and the development of new treatments for CHF. We have developed clinically relevant animal models of heart failure that allow us to explore the translational potential of new treatments. Our work initially examined the role of afterload reduction and neurohormal blockade. More recently we have been working with cell-based therapy for CHF using bioengineered scaffolds to prevent left ventricular (LV) remodeling and restore function in the damaged heart. Our most effective scaffold is a biodegradable vicryl mesh with embedded viable neonatal fibroblasts that secrete angiogenic growth factors. This patch increases myocardial blood flow, improves LV systolic function, and reverses LV remodeling if implanted at the time of an acute myocardial infarction. In CHF, this patch still improves myocardial blood flow but does not improve LV function or reverse LV remodeling. Thus, we have an effective delivery system for cell based therapy for CHF that increases myocardial blood flow and provides structural support for new cell growth. We are now focusing on seeding this patch with human inducible pluripotent stem cells in the cardiac lineage, the seeded cardiomyocytes align, communicate, contract in a spontaneous and rhythmic fashion. When implanted in rats with CHF, they improve LV function. We are exploring this patch seeded with human inducible cardiac pluripotent stem cells to treat patients with CHF. Keywords: induced pluripotent stem cells

Publications

Desai, A., Choi, B., Dudley, S. C., Kittles, R., Machado, R. F., Garcia, J. G., Hillery, C., Indik, J. H., Goldman, S., Juneman, E. B., Groth, J., Nair, N., Rutledge, C., Kanady, J., Fleming, I., Batai, K., Weigand, K., Shi, G., Kim, T. Y., , Gupta, G., et al. (2018). IL-18 is a novel mediator of prolonged QTc and ventricular arrhythmias associated with Sickle Cell Disease. Proceedings of the National Academy of Sciences.
BIO5 Collaborators
Joe GN Garcia, Steven Goldman
Lancaster, J., Pandey, A., Weigand, K., Bahl, J., Juneman, E. B., & Goldman, S. (2016). Implantation of an induced pluripotent stem cell derived cardiomyocyte tissue engineered patch improves left ventricular function and electromechanical coupling in rats with heart failure. Journal of Cardiac Failure, 22(8), S 123. doi:http://dx.doi.org/10.1016/j.cardfail.2016.06.383
Green, J. B., Bethel, M. A., Armstrong, P. W., Buse, J. B., Engel, S. S., Garg, J., Josse, R., Kaufman, K. D., Koglin, J., Korn, S., Lachin, J. M., McGuire, D. K., Pencina, M. J., Standl, E., Stein, P. P., Suryawanshi, S., Van de Werf, F., Peterson, E. D., Holman, R. R., & , T. S. (2015). Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. The New England journal of medicine, 373(3), 232-42.

Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease.

Lancaster, J. J., Juneman, E., Arnce, S. A., Johnson, N. M., Qin, Y., Witte, R., Thai, H., Kellar, R. S., Ek Vitorin, J., Burt, J., Gaballa, M. A., Bahl, J. J., & Goldman, S. (2014). An electrically coupled tissue-engineered cardiomyocyte scaffold improves cardiac function in rats with chronic heart failure. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 33(4), 438-45.

Varying strategies are currently being evaluated to develop tissue-engineered constructs for the treatment of ischemic heart disease. This study examines an angiogenic and biodegradable cardiac construct seeded with neonatal cardiomyocytes for the treatment of chronic heart failure (CHF).

Weigand, K., Witte, R., Moukabary, T., Chinyere, I., Lancaster, J., Pierce, M. K., Goldman, S., & Juneman, E. (2016). In-vivo Electrophysiological Study of Induced Ventricular Tachycardia in Intact Rat Model of Chronic Ischemic Heart Failure. IEEE transactions on bio-medical engineering.

The objective of this study was to define the clinical relevance of in-vivo electrophysiologic (EP) studies in a rat model of chronic ischemic heart failure (CHF).