Tally M Largent-Milnes

Tally M Largent-Milnes

Assistant Professor, Pharmacology
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6400

Research Interest

Dr. Tally Largent-Milnes Ph.D., is a Research Assistant Professor of Pharmacology at the University of Arizona. Dr. Largent-Milnes is a member of the International Association for the Study of Pain, the Society for Neuroscience, and the American Pain Society. Her major research focus is on trigeminal (Vc) synaptic physiology, neuropathic pain and rational design of multifunctional compounds to treat chronic pain. Dr. Largent-Milnes uses whole-cell patch clamp electrophysiology, immunohistochemistry, behavior, and pharmacology, to explore excitatory synaptic transmission between trigeminal afferents and nucleus caudalis (Vc) neurons as well as the adaptations that accompany certain pathologies/pharmacological interventions. Her work is critical to improve our understanding of the construction of the trigeminal system at the synaptic level, and will allow for the development of better therapeutics to treat select craniofacial pain disorders through her research.

Publications

Marshall, T. M., Herman, D. S., Largent-Milnes, T. M., Badghisi, H., Zuber, K., Holt, S. C., Lai, J., Porreca, F., & Vanderah, T. W. (2012). Activation of descending pain-facilitatory pathways from the rostral ventromedial medulla by cholecystokinin elicits release of prostaglandin-E₂ in the spinal cord. Pain, 153(1), 86-94.

Cholecystokinin (CCK) has been suggested to be both pro-nociceptive and "anti-opioid" by actions on pain-modulatory cells within the rostral ventromedial medulla (RVM). One consequence of activation of RVM CCK₂ receptors may be enhanced spinal nociceptive transmission; but how this might occur, especially in states of pathological pain, is unknown. Here, in vivo microdialysis was used to demonstrate that levels of RVM CCK increased by approximately 2-fold after ligation of L₅/L₆ spinal nerves (SNL). Microinjection of CCK into the RVM of naïve rats elicited hypersensitivity to tactile stimulation of the hindpaw. In addition, RVM CCK elicited a time-related increase in (prostaglandin-E₂) PGE₂ measured in cerebrospinal fluid from the lumbar spinal cord. The peak increase in spinal PGE₂ was approximately 5-fold and was observed at approximately 80 minutes post-RVM CCK, a time coincident with maximal RVM CCK-induced mechanical hypersensitivity. Spinal administration of naproxen, a nonselective COX-inhibitor, significantly attenuated RVM CCK-induced hindpaw tactile hypersensitivity. RVM-CCK also resulted in a 2-fold increase in spinal 5-hydroxyindoleacetic acid (5-HIAA), a 5-hydoxytryptophan (5-HT) metabolite, as compared with controls, and mechanical hypersensitivity that was attenuated by spinal application of ondansetron, a 5-HT₃ antagonist. The present studies suggest that chronic nerve injury can result in activation of descending facilitatory mechanisms that may promote hyperalgesia via ultimate release of PGE₂ and 5-HT in the spinal cord.

Hanlon, K. E., Herman, D. S., Agnes, R. S., Largent-Milnes, T. M., Kumarasinghe, I. R., Ma, S. W., Guo, W., Lee, Y., Ossipov, M. H., Hruby, V. J., Lai, J., Porreca, F., & Vanderah, T. W. (2011). Novel peptide ligands with dual acting pharmacophores designed for the pathophysiology of neuropathic pain. Brain research, 1395, 1-11.

The conventional design of high affinity drugs targeted to a single molecule has not resulted in clinically useful therapies for pain relief. Recent reviews have suggested that newly designed analgesic drugs should incorporate multiple targets. The distributions of cholecystokinin (CCK) and CCK receptors in the central nervous system (CNS) overlap significantly with endogenous opioid systems and can be dually targeted. CCK has been shown to act as an endogenous "anti-analgesic" peptide and neuropathic pain conditions promote endogenous CCK release in CNS regions of pain modulation. Administration of CCK into nuclei of the rostral ventromedial medulla induces pronociceptive behaviors in rats. RSA 504 and RSA 601 are novel bifunctional compounds developed to target neuropathic pain by simultaneously acting as agonists at two distinct opioid receptors and antagonizing CCK receptors in the CNS. RSA 504 and RSA 601 demonstrate agonist activity in vitro and antihypersensitivity to mechanical and thermal stimuli in vivo using the spinal nerve ligation model of neuropathic pain. Intrathecal administration of RSA 504 and RSA 601 did not demonstrate antinociceptive tolerance over 7 days of administration and did not display motor impairment or sedation using a rotarod. These are the first behavioral studies that demonstrate how multi-targeted molecule design can address the pathology of neuropathic pain. These compounds with δ and μ opioid agonist activity and CCK antagonist activity within one molecule offer a novel approach with efficacy for neuropathic pain while lacking the side effects typically caused by conventional opioid therapies.

Sandweiss, A. J., Azim, A., Ibraheem, K., Largent-Milnes, T. M., Rhee, P., Vanderah, T. W., & Joseph, B. (2017). Remote ischemic conditioning preserves cognition and motor coordination in a mouse model of traumatic brain injury. The journal of trauma and acute care surgery, 83(6), 1074-1081.

Management of traumatic brain injury (TBI) is focused on minimizing or preventing secondary brain injury. Remote ischemic conditioning (RIC) is an established treatment modality that has been shown to improve patient outcomes in different clinical settings by influencing inflammatory insults. In a clinical trial, RIC showed amelioration of SB100 and neuron-specific enolase. The aim of our study was to further elucidate the mechanisms and outcome when applying RIC in a mouse model of traumatic brain injury.

Ibrahim, M. M., Patwardhan, A., Gilbraith, K. B., Moutal, A., Yang, X., Chew, L. A., Largent-Milnes, T., Malan, T. P., Vanderah, T. W., Porreca, F., & Khanna, R. (2017). Long-lasting antinociceptive effects of green light in acute and chronic pain in rats. Pain, 158(2), 347-360.

Treatments for chronic pain are inadequate, and new options are needed. Nonpharmaceutical approaches are especially attractive with many potential advantages including safety. Light therapy has been suggested to be beneficial in certain medical conditions such as depression, but this approach remains to be explored for modulation of pain. We investigated the effects of light-emitting diodes (LEDs), in the visible spectrum, on acute sensory thresholds in naive rats as well as in experimental neuropathic pain. Rats receiving green LED light (wavelength 525 nm, 8 h/d) showed significantly increased paw withdrawal latency to a noxious thermal stimulus; this antinociceptive effect persisted for 4 days after termination of last exposure without development of tolerance. No apparent side effects were noted and motor performance was not impaired. Despite LED exposure, opaque contact lenses prevented antinociception. Rats fitted with green contact lenses exposed to room light exhibited antinociception arguing for a role of the visual system. Antinociception was not due to stress/anxiety but likely due to increased enkephalins expression in the spinal cord. Naloxone reversed the antinociception, suggesting involvement of central opioid circuits. Rostral ventromedial medulla inactivation prevented expression of light-induced antinociception suggesting engagement of descending inhibition. Green LED exposure also reversed thermal and mechanical hyperalgesia in rats with spinal nerve ligation. Pharmacological and proteomic profiling of dorsal root ganglion neurons from green LED-exposed rats identified changes in calcium channel activity, including a decrease in the N-type (CaV2.2) channel, a primary analgesic target. Thus, green LED therapy may represent a novel, nonpharmacological approach for managing pain.

Vanderah, T. W., Largent-Milnes, T., Lai, J., Porreca, F., Houghten, R. A., Menzaghi, F., Wisniewski, K., Stalewski, J., Sueiras-Diaz, J., Galyean, R., Schteingart, C., Junien, J. L., Trojnar, J., & Rivière, P. J. (2008). Novel D-amino acid tetrapeptides produce potent antinociception by selectively acting at peripheral kappa-opioid receptors. European journal of pharmacology, 583(1), 62-72.

Kappa-(kappa) opioid receptors are widely distributed in the periphery and activation results in antinociception; however supraspinal acting kappa-agonists result in unwanted side effects. Two novel, all d-amino acid, tetrapeptide kappa-opioid receptor agonists, FE 200665 and FE 200666, were identified and compared to brain penetrating (enadoline) and peripherally selective (asimadoline) kappa-agonists as potential analgesics lacking unwanted central nervous system (CNS) side effects. In vitro characterization was performed using radioligand binding and GTP gamma S binding. Antinociception was evaluated in both mice and rats. Rotarod tests were performed to determine motor impairment effects of the kappa-agonists. FE 200665 and FE 200666 showed high affinity for human kappa-opioid receptor 1 (Ki of 0.24 nM and 0.08 nM, respectively) and selectivity for human kappa-opioid receptor 1 (human kappa-opioid receptor 1/human mu-opioid receptor/human delta-opioid receptor selectivity ratios of 1/16,900/84,600 and 1/88,600/>1,250,000, respectively). Both compounds demonstrated agonist activity in the human kappa-opioid receptor 1 [35S]GTP gamma S binding assay (EC50 of 0.08 nM and 0.03 nM) and resulted in dose-related antinociception in the mouse writhing test (A50: 0.007 and 0.013 mg/kg, i.v., respectively). Markedly higher doses of FE 200665 and FE 200666 were required to induce centrally-mediated effects in the rotarod assay (548- and 182-fold higher doses, respectively), and antinociception determined in the mouse tail-flick assay (>1429- and 430-fold fold higher doses, respectively) after peripheral administration supporting a peripheral site of action. The potency ratios between central and peripheral activity suggest a therapeutic window significantly higher than previous kappa-agonists. Furthermore, FE 200665 has entered into clinical trials with great promise as a novel analgesic lacking unwanted side effects seen with current therapeutics.