Thomas P Davis

Thomas P Davis

Professor, Pharmacology
Professor, Pharmacology and Toxicology
Professor, Neuroscience - GIDP
Professor, Physiological Sciences - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
(951) 858-5720

Research Interest

Thomas Davis, PhD, and his lab continue its long-term CNS biodistribution research program, funded by NIH since 1981, by studying the mechanisms involved in delivering drugs across the blood-brain barrier to the C.N.S. during pathological disease states. Recently, Dr. Davis and his lab discovered specifica drug transporters which can be targeted to enhance delivery. They are also interested in studying the effect of hypoxia/aglycemia/inflammatory pain on endothelial cell permeability and structure at the blood-brain barrier. Dr. Davis has recently shown that short-term hypoxia/aglycemia leads to significant alterations in permeability which can be reversed by specific calcium channel antagonists. This work has significant consequences to the study of stroke. Additionally, he has discovered that peripheral pain has significant effects on BBB tight junction protein cytoarchitecture leading to variations in the delivery of analgesics to the CNS.


Davis, T., Witt, K. A., Huber, J. D., Egleton, R. D., & Davis, T. P. (2002). Pluronic p85 block copolymer enhances opioid peptide analgesia. The Journal of pharmacology and experimental therapeutics, 303(2).

Peptide-based drug development is a rapidly growing field within pharmaceutical research. Nevertheless, peptides have found limited clinical use due to several physiological and pathological factors. Pluronic block copolymers represent a growing technology with the potential to enhance efficacy of peptide therapeutics. This investigation assesses Pluronic P85 (P85) and its potential to enhance opioid peptide analgesia. Two opioid peptides, [D-Pen(2),D-Pen(5)]-enkephalin (DPDPE) and biphalin, were examined as to the benefits of P85 coadministration, above (1.0%) and below (0.01%) the critical micelle concentration, with morphine as a nonpeptide control. P85 was examined in vitro to assess blood-brain barrier uptake in association with P-glycoprotein effect, DPDPE and morphine being P-glycoprotein substrates. P85 coadministration with DPDPE and biphalin showed increased (p

Davis, T., Mark, K. S., & Davis, T. P. (2002). Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. American journal of physiology. Heart and circulatory physiology, 282(4).

Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJ) that are critical for maintaining brain homeostasis and low permeability. Both integral (claudin-1 and occludin) and membrane-associated zonula occluden-1 and -2 (ZO-1 and ZO-2) proteins combine to form these TJ complexes that are anchored to the cytoskeletal architecture (actin). Disruptions of the BBB have been attributed to hypoxic conditions that occur with ischemic stroke, pathologies of decreased perfusion, and high-altitude exposure. The effects of hypoxia and posthypoxic reoxygenation in cerebral microvasculature and corresponding cellular mechanisms involved in disrupting the BBB remain unclear. This study examined hypoxia and posthypoxic reoxygenation effects on paracellular permeability and changes in actin and TJ proteins using primary bovine brain microvessel endothelial cells (BBMEC). Hypoxia induced a 2.6-fold increase in [(14)C]sucrose, a marker of paracellular permeability. This effect was significantly reduced (~58%) with posthypoxic reoxygenation. After hypoxia and posthypoxic reoxygenation, actin expression was increased (1.4- and 2.3-fold, respectively). Whereas little change was observed in TJ protein expression immediately after hypoxia, a twofold increase in expression was seen with posthypoxic reoxygenation. Furthermore, immunofluorescence studies showed alterations in occludin, ZO-1, and ZO-2 protein localization during hypoxia and posthypoxic reoxygenation that correlate with the observed changes in BBMEC permeability. The results of this study show hypoxia-induced changes in paracellular permeability may be due to perturbation of TJ complexes and that posthypoxic reoxygenation reverses these effects.

Davis, T., Hawkins, B. T., & Davis, T. P. (2005). The blood-brain barrier/neurovascular unit in health and disease. Pharmacological reviews, 57(2).

The blood-brain barrier (BBB) is the regulated interface between the peripheral circulation and the central nervous system (CNS). Although originally observed by Paul Ehrlich in 1885, the nature of the BBB was debated well into the 20th century. The anatomical substrate of the BBB is the cerebral microvascular endothelium, which, together with astrocytes, pericytes, neurons, and the extracellular matrix, constitute a "neurovascular unit" that is essential for the health and function of the CNS. Tight junctions (TJ) between endothelial cells of the BBB restrict paracellular diffusion of water-soluble substances from blood to brain. The TJ is an intricate complex of transmembrane (junctional adhesion molecule-1, occludin, and claudins) and cytoplasmic (zonula occludens-1 and -2, cingulin, AF-6, and 7H6) proteins linked to the actin cytoskeleton. The expression and subcellular localization of TJ proteins are modulated by several intrinsic signaling pathways, including those involving calcium, phosphorylation, and G-proteins. Disruption of BBB TJ by disease or drugs can lead to impaired BBB function and thus compromise the CNS. Therefore, understanding how BBB TJ might be affected by various factors holds significant promise for the prevention and treatment of neurological diseases.

Davis, T., Egleton, R. D., Campos, C. C., Huber, J. D., Brown, R. C., & Davis, T. P. (2003). Differential effects of diabetes on rat choroid plexus ion transporter expression. Diabetes, 52(6).

Though diabetes is a disease with vascular complications, little is known about its effects on the blood-brain barrier or the blood-cerebrospinal fluid barrier (BCSFB). The BCSFB is situated at choroid plexuses located in the lateral, third, and fourth ventricles. Choroid plexuses are the primary site of cerebrospinal fluid (CSF) production and express numerous ion transporters. Previous studies have shown a perturbation of ion transport in the periphery and brain during diabetes. In this study, we investigated the effect of diabetes on ion transporters in the choroid plexuses of streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in male Sprague-Dawley rats by intraperitoneal injection of STZ (60 mg/kg in citrate buffer, confirmed by glucose analysis: 601 +/- 22 mg/dl diabetic rats, 181 +/- 46 mg/dl age-matched controls); and at 28 days, rats were killed, choroid plexuses harvested, and protein extracted. Western blot analyses were carried out using antibodies for ion transporters, including Na(+)-K(+)-2Cl(-) cotransporter and the Na(+)-K(+)-ATPase alpha1-subunit. The efflux of the K(+) analog (86)Rb(+) from choroid plexus was also studied. Diabetic rats showed an increase in expression of the Na(+)-K(+)-2Cl(-) cotransporter and the Na(+)-K(+)-ATPase alpha1-subunit, as compared with age-matched controls, a decrease in Na(+)-H(+) exchanger expression, and no change in Na(+)-K(+)-ATPase beta1- or beta2-subunit. The net effect of these changes was a 66% increase in (86)Rb(+) efflux from diabetic choroid plexus compared with controls. These changes in expression may affect choroid plexus ion balance and thus significantly affect CSF production in diabetic rats.

Davis, T., Lochhead, J. J., McCaffrey, G., Quigley, C. E., Finch, J., DeMarco, K. M., Nametz, N., & Davis, T. P. (2010). Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 30(9).

The blood-brain barrier (BBB) has a critical role in central nervous system homeostasis. Intercellular tight junction (TJ) protein complexes of the brain microvasculature limit paracellular diffusion of substances from the blood into the brain. Hypoxia and reoxygenation (HR) is a central component to numerous disease states and pathologic conditions. We have previously shown that HR can influence the permeability of the BBB as well as the critical TJ protein occludin. During HR, free radicals are produced, which may lead to oxidative stress. Using the free radical scavenger tempol (200 mg/kg, intraperitoneal), we show that oxidative stress produced during HR (6% O(2) for 1 h, followed by room air for 20 min) mediates an increase in BBB permeability in vivo using in situ brain perfusion. We also show that these changes are associated with alterations in the structure and localization of occludin. Our data indicate that oxidative stress is associated with movement of occludin away from the TJ. Furthermore, subcellular fractionation of cerebral microvessels reveals alterations in occludin oligomeric assemblies in TJ associated with plasma membrane lipid rafts. Our data suggest that pharmacological inhibition of disease states with an HR component may help preserve BBB functional integrity.