Thomas P Davis

Thomas P Davis

Professor, Pharmacology
Professor, Pharmacology and Toxicology
Professor, Neuroscience - GIDP
Professor, Physiological Sciences - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(951) 858-5720

Research Interest

Thomas Davis, PhD, and his lab continue its long-term CNS biodistribution research program, funded by NIH since 1981, by studying the mechanisms involved in delivering drugs across the blood-brain barrier to the C.N.S. during pathological disease states. Recently, Dr. Davis and his lab discovered specifica drug transporters which can be targeted to enhance delivery. They are also interested in studying the effect of hypoxia/aglycemia/inflammatory pain on endothelial cell permeability and structure at the blood-brain barrier. Dr. Davis has recently shown that short-term hypoxia/aglycemia leads to significant alterations in permeability which can be reversed by specific calcium channel antagonists. This work has significant consequences to the study of stroke. Additionally, he has discovered that peripheral pain has significant effects on BBB tight junction protein cytoarchitecture leading to variations in the delivery of analgesics to the CNS.

Publications

Davis, T., Campos, C. R., Ocheltree, S. M., Hom, S., Egleton, R. D., & Davis, T. P. (2008). Nociceptive inhibition prevents inflammatory pain induced changes in the blood-brain barrier. Brain research, 1221.

Previous studies by our group have shown that peripheral inflammatory insult, using the lambda-carrageenan inflammatory pain (CIP) model, induced alterations in the molecular and functional properties of the blood-brain barrier (BBB). The question remained whether these changes were mediated via an inflammatory and/or neuronal mechanism. In this study, we investigated the involvement of neuronal input from pain activity on alterations in BBB integrity by peripheral inhibition of nociceptive input. A perineural injection of 0.75% bupivacaine into the right hind leg prior to CIP was used for peripheral nerve block. Upon nerve block, there was a significant decrease in thermal allodynia induced by CIP, but no effect on edema formation 1 h post-CIP. BBB permeability was increased 1 h post-CIP treatment as determined by in situ brain perfusion of [(14)C] sucrose; bupivacaine nerve block of CIP caused an attenuation of [(14)C] sucrose permeability, back to saline control levels. Paralleling the changes in [(14)C] sucrose permeability, we also report increased expression of three tight junction (TJ) proteins, zonula occluden-1 (ZO-1), occludin and claudin-5 with CIP. Upon bupivacaine nerve block, changes in expression were prevented. These data show that the lambda-carrageenan-induced changes in [(14)C] sucrose permeability and protein expression of ZO-1, occludin and claudin-5 are prevented with inhibition of nociceptive input. Therefore, we suggest that nociceptive signaling is in part responsible for the alteration in BBB integrity under CIP.

Davis, T. P., Abbruscato, T. J., & Egleton, R. D. (2015). Peptides at the blood brain barrier: Knowing me knowing you. Peptides, 72, 50-6.

When the Davis Lab was first asked to contribute to this special edition of Peptides to celebrate the career and influence of Abba Kastin on peptide research, it felt like a daunting task. It is difficult to really understand and appreciate the influence that Abba has had, not only on a generation of peptide researchers, but also on the field of blood brain barrier (BBB) research, unless you lived it as we did. When we look back at our careers and those of our former students, one can truly see that several of Abba's papers played an influential role in the development of our personal research programs.