Zelieann R Craig
Associate Professor, Animal and Comparative Biomedical Sciences
Associate Professor, BIO5 Institute
Associate Professor, Physiological Sciences - GIDP
Primary Department
(520) 621-8082
Work Summary
We investigate how the chemicals in our daily lives interact with the female reproductive system and influence fertility. We hope that our discoveries will help reduce the incidence of infertility and improve women's health.
Research Interest
Nearly 50 million couples experience some form of infertility worldwide. Several factors increase a woman’s risk for infertility including aging, stress, and exposure to chemicals. A group of chemicals collectively known as phthalates have been classified as endocrine disruptors based on their ability to interact with the reproductive system. Phthalates have been detected in human urine, animal tissues, and feed. Despite these observations, how phthalates interact with the female reproductive system and what this means for overall fertility is currently unknown. Dr. Craig's work focuses on understanding how phthalates affect the function of the ovary, the major reproductive organ in females. Thus, work in her laboratory is focused on using animal models to help us understand the mechanisms by which phthalates exert their effects on the ovary, determine whether phthalates cause female infertility, and examine whether the effects of phthalates on female reproduction can be prevented or reversed. Using this knowledge she hopes to inspire and guide future work aimed at reducing, preventing, and/or reversing chemical-related infertility in humans and animals. Keywords: Infertility, Toxicology, Endocrine Disruptors, Phthalates, Reproduction


Barton, J. K., Connolly, D. C., Craig, Z. R., Chambers, S. K., Hutchens, G. V., Dominguez Cooks, J. P., Koevary, J. W., Howard, C. C., Rice, P. F., & Hoyer, P. (2018). Comparison of Markers of Reproductive Function in Female C57Bl/6 versus TgMISIIR-TAg Transgenic Mice: Effect of VCD exposure on Ovarian Failure.. Comparative Medicine.
BIO5 Collaborators
Jennifer Kehlet Barton, Zelieann R Craig
Craig, Z. R., Davis, J. R., Marion, S. L., Barton, J. K., & Hoyer, P. B. (2010). 7,12-Dimethylbenz[A]Anthracene Induces Sertoli-Leydig-Cell Tumors in the Follicle-Depleted Ovaries of Mice Treated with 4-Vinylcyclohexene Diepoxide. COMPARATIVE MEDICINE, 60(1), 10-17.
BIO5 Collaborators
Jennifer Kehlet Barton, Zelieann R Craig
Rivera, Z., Christian, P. J., Marion, S. L., Brooks, H. L., & Hoyer, P. B. (2009). Steroidogenic capacity of residual ovarian tissue in 4-vinylcyclohexene diepoxide-treated mice. Biology of reproduction, 80(2), 328-36.
BIO5 Collaborators
Heddwen L Brooks, Zelieann R Craig

Menopause is an important public health issue because of its association with a number of disorders. Androgens produced by residual ovarian tissue after menopause could impact the development of these disorders. It has been unclear, however, whether the postmenopausal ovary retains steroidogenic capacity. Thus, an ovary-intact mouse model for menopause that uses the occupational chemical 4-vinylcyclohexene diepoxide (VCD) was used to characterize the expression of steroidogenic genes in residual ovarian tissue of follicle-depleted mice. Female B6C3F1 mice (age, 28 days) were dosed daily for 20 days with either vehicle or VCD (160 mg kg(-1) day(-1)) to induce ovarian failure. Ovaries were collected on Day 181 and analyzed for mRNA and protein. Acyclic aged mice were used as controls for natural ovarian senescence. Relative to cycling controls, expression of mRNA encoding steroidogenic acute regulatory protein (Star); cholesterol side-chain cleavage (Cyp11a1); 3beta-hydroxysteroid dehydrogenase (Hsd3b); 17alpha-hydroxylase (Cyp17a1); scavenger receptor class B, type 1 (Scarb1); low-density lipoprotein receptor (Ldlr); and luteinizing hormone receptor (Lhcgr) was enriched in VCD-treated ovaries. In acyclic aged ovaries, mRNA expression for only Cyp17a1 and Lhcgr was greater than that in controls. Compared to cycling controls, ovaries from VCD-treated and aged mice had similar levels of HSD3B, CYP17A1, and LHCGR protein. The pattern of protein immunofluorescence staining for HSD3B in follicle-depleted (VCD-treated) ovaries was homogeneous, whereas that for CYP17A1 was only seen in residual interstitial cells. Circulating levels of FSH and LH were increased, and androstenedione levels were detectable following follicle depletion in VCD-treated mice. These findings support the idea that residual ovarian tissue in VCD-treated mice retains androgenic capacity.

Peretz, J., Craig, Z. R., & Flaws, J. A. (2012). Bisphenol A inhibits follicle growth and induces atresia in cultured mouse antral follicles independently of the genomic estrogenic pathway. Biology of reproduction, 87(3), 63.

Bisphenol A (BPA) is an estrogenic chemical used to manufacture many commonly used plastic and epoxy resin-based products. BPA ubiquitously binds to estrogen receptors throughout the body, including estrogen receptor alpha (ESR1) in the ovary. Few studies have investigated the effects of BPA on ovarian antral follicles. Thus, we tested the hypothesis that BPA alters cell cycle regulators and induces atresia in antral follicles via the genomic estrogenic pathway, inhibiting follicle growth. To test this hypothesis, we isolated antral follicles from 32- to 35-day-old control and Esr1-overexpressing mice and cultured them with vehicle control (dimethylsulfoxide [DMSO]) or BPA (1-100 μg/ml). Additionally, antral follicles were isolated from 32- to 35-day-old FVB mice and cultured with DMSO, BPA (1-100 μg/ml), estradiol (10 nM), ICI 182,780 (ICI; 1 μM), BPA plus ICI, or BPA plus estradiol. Follicles were measured for growth every 24 h for 96-120 h and processed either for analysis of estrogen receptor, cell cycle, and/or atresia factor mRNA expression, or for histological evaluation of atresia. Results indicate that estradiol and ICI do not protect follicles from BPA-induced growth inhibition and that estradiol does not protect follicles from BPA-induced atresia. Furthermore, overexpressing Esr1 does not increase susceptibility of follicles to BPA-induced growth inhibition. Additionally, BPA up-regulates Cdk4, Ccne1, and Trp53 expression, whereas it down-regulates Ccnd2 expression. BPA also up-regulates Bax and Bcl2 expression while inducing atresia in antral follicles. These data indicate that BPA abnormally regulates cell cycle and atresia factors, and this may lead to atresia and inhibited follicle growth independently of the genomic estrogenic pathway.

Craig, Z. R., & Ziv-Gal, A. (2017). Pretty good or pretty bad? - The ovary and chemicals in personal care products. Toxicological sciences : an official journal of the Society of Toxicology.

Personal care products (PCP) contain a myriad of chemicals generally formulated to provide a safe and beneficial use. Nonetheless, an increasing amount of laboratory animal and human studies indicate that some chemicals in PCP are associated with decreased hormone production, diminished ovarian reserve, ovarian cancer, and early pregnancy loss. The ovary is key to female fertility by providing the eggs and sex steroid hormones for fertilization and maintenance of reproductive function, respectively. Thus, understanding how chemicals in PCP affect the ovary will shed some light on their potential effects on female fertility. In this review, we provide an overview of: (1) ovarian function as a determinant of fertility in females, (2) the status of knowledge regarding the effects of seven common chemicals in PCP on the ovary, and (3) significant gaps in the literature along with opportunities to eliminate some of the gaps. Findings from the limited existing data suggest that chemicals in PCP such as dibutyl phthalate can reach the ovary in humans and impact its function in animal models. Unfortunately, it is still difficult to assess how relevant findings of experimental studies are to women because of lack of human exposure data for most of these chemicals and the lack of studies that mimic real-life exposures. In contrast to chemicals such as bisphenol A and dioxin, the investigation of the effects of chemicals in PCP on reproductive function is still limited and warrants further investigation to fill existing data gaps.